These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 39191174)
61. Predictive value of MRI-based deep learning model for lymphovascular invasion status in node-negative invasive breast cancer. Liang R; Li F; Yao J; Tong F; Hua M; Liu J; Shi C; Sui L; Lu H Sci Rep; 2024 Jul; 14(1):16204. PubMed ID: 39003325 [TBL] [Abstract][Full Text] [Related]
62. Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI. Liu C; Ding J; Spuhler K; Gao Y; Serrano Sosa M; Moriarty M; Hussain S; He X; Liang C; Huang C J Magn Reson Imaging; 2019 Jan; 49(1):131-140. PubMed ID: 30171822 [TBL] [Abstract][Full Text] [Related]
63. A computer-aided diagnosis (CAD) scheme for pretreatment prediction of pathological response to neoadjuvant therapy using dynamic contrast-enhanced MRI texture features. Giannini V; Mazzetti S; Marmo A; Montemurro F; Regge D; Martincich L Br J Radiol; 2017 Aug; 90(1077):20170269. PubMed ID: 28707546 [TBL] [Abstract][Full Text] [Related]
64. Predicting Post Neoadjuvant Axillary Response Using a Novel Convolutional Neural Network Algorithm. Ha R; Chang P; Karcich J; Mutasa S; Van Sant EP; Connolly E; Chin C; Taback B; Liu MZ; Jambawalikar S Ann Surg Oncol; 2018 Oct; 25(10):3037-3043. PubMed ID: 29978368 [TBL] [Abstract][Full Text] [Related]
65. Nomogram for predicting axillary upstaging in clinical node-negative breast cancer patients receiving neoadjuvant chemotherapy. Maimaitiaili A; Chen H; Xie P; Liu Z; Ling R; Zhao Y; Yang H; Liu Y; Liu K; Zhang J; Mao D; Yu Z; Liu Y; Fu P; Wang J; Jiang H; Zhao Z; Tian X; Cao Z; Wu K; Song A; Jin F; He J; Fan Z; Zhang H J Cancer Res Clin Oncol; 2023 Sep; 149(11):8769-8778. PubMed ID: 37129606 [TBL] [Abstract][Full Text] [Related]
66. Nomograms for Predicting Axillary Response to Neoadjuvant Chemotherapy in Clinically Node-Positive Patients with Breast Cancer. Vila J; Mittendorf EA; Farante G; Bassett RL; Veronesi P; Galimberti V; Peradze N; Stauder MC; Chavez-MacGregor M; Litton JF; Huo L; Kuerer HM; Hunt KK; Caudle AS Ann Surg Oncol; 2016 Oct; 23(11):3501-3509. PubMed ID: 27216742 [TBL] [Abstract][Full Text] [Related]
67. Enhancing pathological complete response prediction in breast cancer: the role of dynamic characterization of DCE-MRI and its association with tumor heterogeneity. Zhang X; Teng X; Zhang J; Lai Q; Cai J Breast Cancer Res; 2024 May; 26(1):77. PubMed ID: 38745321 [TBL] [Abstract][Full Text] [Related]
68. Axillary Pathologic Complete Response to Neoadjuvant Chemotherapy in Clinically Node-Positive Breast Cancer Patients: A Predictive Model Integrating the Imaging Characteristics of Ultrasound Restaging with Known Clinicopathologic Characteristics. Kim WH; Kim HJ; Park HY; Park JY; Chae YS; Lee SM; Cho SH; Shin KM; Lee SY Ultrasound Med Biol; 2019 Mar; 45(3):702-709. PubMed ID: 30567630 [TBL] [Abstract][Full Text] [Related]
69. Clinical impact of breast MRI with regard to axillary reverse mapping in clinically node positive breast cancer patients following neo-adjuvant chemotherapy. Beek MA; Tetteroo E; Luiten EJ; Gobardhan PD; Rutten HJ; Heijns JB; Voogd AC; Klompenhouwer EG Eur J Surg Oncol; 2016 May; 42(5):672-8. PubMed ID: 26898838 [TBL] [Abstract][Full Text] [Related]
70. A Clinical-Radiomics Model for Predicting Axillary Pathologic Complete Response in Breast Cancer With Axillary Lymph Node Metastases. Gan L; Ma M; Liu Y; Liu Q; Xin L; Cheng Y; Xu L; Qin N; Jiang Y; Zhang X; Wang X; Ye J Front Oncol; 2021; 11():786346. PubMed ID: 34993145 [TBL] [Abstract][Full Text] [Related]
71. MRI radiomics and biological correlations for predicting axillary lymph node burden in early-stage breast cancer. Hong M; Fan S; Xu Z; Fang Z; Ling K; Lai P; Han C; Chen Z; Hou J; Liang Y; Zhou C; Wang J; Chen X; Huang Y; Xu M J Transl Med; 2024 Sep; 22(1):826. PubMed ID: 39243024 [TBL] [Abstract][Full Text] [Related]
72. Management of the axilla after neoadjuvant chemotherapy for clinically node positive breast cancer: A nationwide survey study in The Netherlands. Vugts G; Maaskant-Braat AJ; de Roos WK; Voogd AC; Nieuwenhuijzen GA Eur J Surg Oncol; 2016 Jul; 42(7):956-64. PubMed ID: 27107791 [TBL] [Abstract][Full Text] [Related]
73. Sentinel node biopsy after neoadjuvant chemotherapy in cytologically proven node-positive breast cancer. Yagata H; Yamauchi H; Tsugawa K; Hayashi N; Yoshida A; Kajiura Y; In R; Matsuda N; Nakamura S Clin Breast Cancer; 2013 Dec; 13(6):471-7. PubMed ID: 24267732 [TBL] [Abstract][Full Text] [Related]
74. Machine Learning Radiomics-Based Prediction of Non-sentinel Lymph Node Metastasis in Chinese Breast Cancer Patients with 1-2 Positive Sentinel Lymph Nodes: A Multicenter Study. Lin G; Chen W; Fan Y; Zhou Y; Li X; Hu X; Cheng X; Chen M; Kong C; Chen M; Xu M; Peng Z; Ji J Acad Radiol; 2024 Aug; 31(8):3081-3095. PubMed ID: 38490840 [TBL] [Abstract][Full Text] [Related]
75. Can breast MRI predict axillary lymph node metastasis in women undergoing neoadjuvant chemotherapy. Javid S; Segara D; Lotfi P; Raza S; Golshan M Ann Surg Oncol; 2010 Jul; 17(7):1841-6. PubMed ID: 20143266 [TBL] [Abstract][Full Text] [Related]
76. Role of diffusion-weighted MRI: predicting axillary lymph node metastases in breast cancer. Chung J; Youk JH; Kim JA; Gweon HM; Kim EK; Ryu YH; Son EJ Acta Radiol; 2014 Oct; 55(8):909-16. PubMed ID: 24234236 [TBL] [Abstract][Full Text] [Related]
77. Automated and reusable deep learning (AutoRDL) framework for predicting response to neoadjuvant chemotherapy and axillary lymph node metastasis in breast cancer using ultrasound images: a retrospective, multicentre study. You J; Huang Y; Ouyang L; Zhang X; Chen P; Wu X; Jin Z; Shen H; Zhang L; Chen Q; Pei S; Zhang B; Zhang S EClinicalMedicine; 2024 Mar; 69():102499. PubMed ID: 38440400 [TBL] [Abstract][Full Text] [Related]
78. Predictive value of tumor-infiltrating lymphocytes for pathological response to neoadjuvant chemotherapy in breast cancer patients with axillary lymph node metastasis. Yokotani T; Ikeda N; Hirao T; Tanaka Y; Morita K; Fujii T; Ohbayashi C; Nakamura T; Kobayashi T; Sho M Surg Today; 2021 Apr; 51(4):595-604. PubMed ID: 33052489 [TBL] [Abstract][Full Text] [Related]
79. Difference of DCE-MRI Parameters at Different Time Points and Their Predictive Value for Axillary Lymph Node Metastasis of Breast Cancer. Ya G; Wen F; Xing-Ru L; Zhuan-Zhuan G; Jun-Qiang L Acad Radiol; 2022 Jan; 29 Suppl 1():S79-S86. PubMed ID: 33504446 [TBL] [Abstract][Full Text] [Related]
80. Prediction of pathological complete response to neoadjuvant chemotherapy in patients with breast cancer using a combination of contrast-enhanced ultrasound and dynamic contrast-enhanced magnetic resonance imaging. Han X; Yang H; Jin S; Sun Y; Zhang H; Shan M; Cheng W Cancer Med; 2023 Jan; 12(2):1389-1398. PubMed ID: 35822639 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]