These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Differentiating Cell Entry Potentials of SARS-CoV-2 Omicron Subvariants on Human Lung Epithelium Cells. Katte RH; Ao Y; Xu W; Han Y; Zhong G; Ghimire D; Florence J; Tucker TA; Lu M Viruses; 2024 Mar; 16(3):. PubMed ID: 38543757 [TBL] [Abstract][Full Text] [Related]
3. Temperature-dependent Spike-ACE2 interaction of Omicron subvariants is associated with viral transmission. Benlarbi M; Ding S; Bélanger É; Tauzin A; Poujol R; Medjahed H; El Ferri O; Bo Y; Bourassa C; Hussin J; Fafard J; Pazgier M; Levade I; Abrams C; Côté M; Finzi A mBio; 2024 Aug; 15(8):e0090724. PubMed ID: 38953636 [TBL] [Abstract][Full Text] [Related]
4. SARS-CoV-2 Omicron entry is type II transmembrane serine protease-mediated in human airway and intestinal organoid models. Mykytyn AZ; Breugem TI; Geurts MH; Beumer J; Schipper D; van Acker R; van den Doel PB; van Royen ME; Zhang J; Clevers H; Haagmans BL; Lamers MM J Virol; 2023 Aug; 97(8):e0085123. PubMed ID: 37555660 [TBL] [Abstract][Full Text] [Related]
5. SARS-CoV-2 Omicron BA.1 Variant Infection of Human Colon Epithelial Cells. Antia A; Alvarado DM; Zeng Q; Casorla-Perez LA; Davis DL; Sonnek NM; Ciorba MA; Ding S Viruses; 2024 Apr; 16(4):. PubMed ID: 38675974 [TBL] [Abstract][Full Text] [Related]
6. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Meng B; Abdullahi A; Ferreira IATM; Goonawardane N; Saito A; Kimura I; Yamasoba D; Gerber PP; Fatihi S; Rathore S; Zepeda SK; Papa G; Kemp SA; Ikeda T; Toyoda M; Tan TS; Kuramochi J; Mitsunaga S; Ueno T; Shirakawa K; Takaori-Kondo A; Brevini T; Mallery DL; Charles OJ; ; ; ; Bowen JE; Joshi A; Walls AC; Jackson L; Martin D; Smith KGC; Bradley J; Briggs JAG; Choi J; Madissoon E; Meyer KB; Mlcochova P; Ceron-Gutierrez L; Doffinger R; Teichmann SA; Fisher AJ; Pizzuto MS; de Marco A; Corti D; Hosmillo M; Lee JH; James LC; Thukral L; Veesler D; Sigal A; Sampaziotis F; Goodfellow IG; Matheson NJ; Sato K; Gupta RK Nature; 2022 Mar; 603(7902):706-714. PubMed ID: 35104837 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Entry Pathways, Species-Specific Angiotensin-Converting Enzyme 2 Residues Determining Entry, and Antibody Neutralization Evasion of Omicron BA.1, BA.1.1, BA.2, and BA.3 Variants. Neerukonda SN; Wang R; Vassell R; Baha H; Lusvarghi S; Liu S; Wang T; Weiss CD; Wang W J Virol; 2022 Sep; 96(17):e0114022. PubMed ID: 36000843 [TBL] [Abstract][Full Text] [Related]
8. Clinical Isolates of Human Coronavirus 229E Bypass the Endosome for Cell Entry. Shirato K; Kanou K; Kawase M; Matsuyama S J Virol; 2017 Jan; 91(1):. PubMed ID: 27733646 [TBL] [Abstract][Full Text] [Related]
9. Nanomolar anti-SARS-CoV-2 Omicron activity of the host-directed TMPRSS2 inhibitor N-0385 and synergistic action with direct-acting antivirals. Pérez-Vargas J; Lemieux G; Thompson CAH; Désilets A; Ennis S; Gao G; Gordon DG; Schulz AL; Niikura M; Nabi IR; Krajden M; Boudreault PL; Leduc R; Jean F Antiviral Res; 2024 May; 225():105869. PubMed ID: 38548023 [TBL] [Abstract][Full Text] [Related]
10. Determinants and Mechanisms of the Low Fusogenicity and High Dependence on Endosomal Entry of Omicron Subvariants. Qu P; Evans JP; Kurhade C; Zeng C; Zheng YM; Xu K; Shi PY; Xie X; Liu SL mBio; 2023 Feb; 14(1):e0317622. PubMed ID: 36625591 [TBL] [Abstract][Full Text] [Related]
11. Spike mutations contributing to the altered entry preference of SARS-CoV-2 omicron BA.1 and BA.2. Hu B; Chan JF; Liu H; Liu Y; Chai Y; Shi J; Shuai H; Hou Y; Huang X; Yuen TT; Yoon C; Zhu T; Zhang J; Li W; Zhang AJ; Zhou J; Yuan S; Zhang BZ; Yuen KY; Chu H Emerg Microbes Infect; 2022 Dec; 11(1):2275-2287. PubMed ID: 36039901 [TBL] [Abstract][Full Text] [Related]
12. SARS-CoV-2 Omicron XBB subvariants exhibit enhanced fusogenicity and substantial immune evasion in elderly population, but high sensitivity to pan-coronavirus fusion inhibitors. Xia S; Jiao F; Wang L; Yu X; Lu T; Fu Y; Huang Z; Li X; Huang J; Wang Q; Man Q; Xiong L; Jiang S; Lu L J Med Virol; 2023 Mar; 95(3):e28641. PubMed ID: 36890632 [TBL] [Abstract][Full Text] [Related]
13. Structural evolution of SARS-CoV-2 omicron in human receptor recognition. Zhang W; Shi K; Geng Q; Herbst M; Wang M; Huang L; Bu F; Liu B; Aihara H; Li F J Virol; 2023 Aug; 97(8):e0082223. PubMed ID: 37578233 [TBL] [Abstract][Full Text] [Related]
14. SARS-CoV-2 Delta and Omicron variants resist spike cleavage by human airway trypsin-like protease. Ren W; Hong W; Yang J; Zou J; Chen L; Zhou Y; Lei H; Alu A; Que H; Gong Y; Bi Z; He C; Fu M; Peng D; Yang Y; Yu W; Tang C; Huang Q; Yang M; Li B; Li J; Wang J; Ma X; Hu H; Cheng W; Dong H; Lei J; Chen L; Zhou X; Li J; Wang W; Lu G; Shen G; Yang L; Yang J; Wang Z; Jia G; Su Z; Shao B; Miao H; Yiu-Nam Lau J; Wei Y; Zhang K; Dai L; Lu S; Wei X J Clin Invest; 2024 Sep; 134(18):. PubMed ID: 39286971 [TBL] [Abstract][Full Text] [Related]
15. Intranasal Boosting with Spike Fc-RBD of Wild-Type SARS-CoV-2 Induces Neutralizing Antibodies against Omicron Subvariants and Reduces Viral Load in the Nasal Turbinate of Mice. Cai JP; Luo C; Wang K; Cao H; Chen LL; Zhang X; Han Y; Yin F; Zhang AJ; Chu H; Yuan S; Kok KH; To KK; Chen H; Chen Z; Jin DY; Yuen KY; Chan JF Viruses; 2023 Mar; 15(3):. PubMed ID: 36992395 [TBL] [Abstract][Full Text] [Related]
16. Impact of SARS-CoV-2 Spike Mutations on Its Activation by TMPRSS2 and the Alternative TMPRSS13 Protease. Stevaert A; Van Berwaer R; Mestdagh C; Vandeput J; Vanstreels E; Raeymaekers V; Laporte M; Naesens L mBio; 2022 Aug; 13(4):e0137622. PubMed ID: 35913162 [TBL] [Abstract][Full Text] [Related]
17. SARS-CoV-2 Omicron subvariants exhibit distinct fusogenicity, but similar sensitivity, to pan-CoV fusion inhibitors. Xia S; Wang L; Jiao F; Yu X; Xu W; Huang Z; Li X; Wang Q; Zhu Y; Man Q; Jiang S; Lu L Emerg Microbes Infect; 2023 Dec; 12(1):2178241. PubMed ID: 36748716 [TBL] [Abstract][Full Text] [Related]
18. MVA-based vaccine candidates expressing SARS-CoV-2 prefusion-stabilized spike proteins of the Wuhan, Beta or Omicron BA.1 variants protect transgenic K18-hACE2 mice against Omicron infection and elicit robust and broad specific humoral and cellular immune responses. Pérez P; Astorgano D; Albericio G; Flores S; Sánchez-Corzo C; Noriega MA; Sánchez-Cordón PJ; Labiod N; Delgado R; Casasnovas JM; Esteban M; García-Arriaza J Front Immunol; 2024; 15():1420304. PubMed ID: 39267752 [TBL] [Abstract][Full Text] [Related]
19. Rapid SARS-CoV-2 Adaptation to Available Cellular Proteases. Chaudhry MZ; Eschke K; Hoffmann M; Grashoff M; Abassi L; Kim Y; Brunotte L; Ludwig S; Kröger A; Klawonn F; Pöhlmann SH; Cicin-Sain L J Virol; 2022 Mar; 96(5):e0218621. PubMed ID: 35019723 [TBL] [Abstract][Full Text] [Related]
20. The rapid rise of SARS-CoV-2 Omicron subvariants with immune evasion properties: XBB.1.5 and BQ.1.1 subvariants. Ao D; He X; Hong W; Wei X MedComm (2020); 2023 Apr; 4(2):e239. PubMed ID: 36938325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]