These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 39191830)

  • 21. Municipal Solid and Plastic Waste Co-pyrolysis Towards Sustainable Renewable Fuel and Carbon Materials: A Comprehensive Review.
    Razzak SA
    Chem Asian J; 2024 Sep; 19(17):e202400307. PubMed ID: 38880993
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An economic evaluation and assessment of environmental impact of the municipal solid waste management system for Taichung City in Taiwan.
    Chang YJ; Chu CW; Lin MD
    J Air Waste Manag Assoc; 2012 May; 62(5):527-40. PubMed ID: 22696803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermochemical conversion of municipal solid waste into energy and hydrogen: a review.
    Nandhini R; Berslin D; Sivaprakash B; Rajamohan N; Vo DN
    Environ Chem Lett; 2022; 20(3):1645-1669. PubMed ID: 35350388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review on technological options of waste to energy for effective management of municipal solid waste.
    Kumar A; Samadder SR
    Waste Manag; 2017 Nov; 69():407-422. PubMed ID: 28886975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three municipal solid waste gasification technologies analysis for electrical energy generation in Brazil.
    Medina Jimenez AC; Bereche RP; Nebra S
    Waste Manag Res; 2019 Jun; 37(6):631-642. PubMed ID: 30983548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact.
    Aracil C; Haro P; Fuentes-Cano D; Gómez-Barea A
    Waste Manag; 2018 Jun; 76():443-456. PubMed ID: 29610061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimal planning for the sustainable utilization of municipal solid waste.
    Santibañez-Aguilar JE; Ponce-Ortega JM; Betzabe González-Campos J; Serna-González M; El-Halwagi MM
    Waste Manag; 2013 Dec; 33(12):2607-22. PubMed ID: 24035245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy, environmental, resource recovery, and economic dimensions of municipal solid waste management paths in Mexico city.
    Juárez-Hernández S
    Waste Manag; 2021 Dec; 136():321-336. PubMed ID: 34752972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent evolution in thermochemical transformation of municipal solid wastes to alternate fuels.
    Sarker TR; Khatun ML; Ethen DZ; Ali MR; Islam MS; Chowdhury S; Rahman KS; Sayem NS; Akm RS
    Heliyon; 2024 Sep; 10(17):e37105. PubMed ID: 39296224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in valorization of organic municipal waste into energy using biorefinery approach, environment and economic analysis.
    Rajendran N; Gurunathan B; Han J; Krishna S; Ananth A; Venugopal K; Sherly Priyanka RB
    Bioresour Technol; 2021 Oct; 337():125498. PubMed ID: 34320774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental and economic implications of recovering resources from food waste in a circular economy.
    Slorach PC; Jeswani HK; Cuéllar-Franca R; Azapagic A
    Sci Total Environ; 2019 Nov; 693():133516. PubMed ID: 31635000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Environmental and economic performances of municipal solid waste management strategies based on LCA method: A case study of kinshasa.
    Kang YO; Yabar H; Mizunoya T; Higano Y
    Heliyon; 2023 Mar; 9(3):e14372. PubMed ID: 36950596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous achievement of energy recovery and carbon sequestration through municipal solid waste management: A review.
    Salvador RW; Doong RA
    Chemosphere; 2024 Aug; 361():142478. PubMed ID: 38815817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy recovery potential from incineration using municipal solid waste based on multi-scenario analysis in Beijing.
    Gu W; Liu D; Wang C
    Environ Sci Pollut Res Int; 2021 Jun; 28(21):27119-27131. PubMed ID: 33506413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decision-theoretic rough set model and spatial analysis-based waste-to-energy incineration plant site selection: a case study in first-tier cities of China.
    Zhang X; Kang J; Che Y; Cao X; Li P
    Environ Sci Pollut Res Int; 2023 Nov; 30(54):115699-115720. PubMed ID: 37889411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of waste processing byproducts on the carbon footprint of integrated waste-to-energy strategies.
    Abdallah M; Elfeky A
    J Environ Manage; 2021 Feb; 280():111839. PubMed ID: 33360739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An optimisation model for regional integrated solid waste management II. Model application and sensitivity analyses.
    Najm MA; El-Fadel M; Ayoub G; El-Taha M; Al-Awar F
    Waste Manag Res; 2002 Feb; 20(1):46-54. PubMed ID: 12020095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seasonal characterization of municipal solid waste for selecting feasible waste treatment technology for Guwahati city, India.
    Singhal A; Gupta AK; Dubey B; Ghangrekar MM
    J Air Waste Manag Assoc; 2022 Feb; 72(2):147-160. PubMed ID: 34554054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Environmental sustainability in the food-energy-water-health nexus: A new methodology and an application to food waste in a circular economy.
    Slorach PC; Jeswani HK; Cuéllar-Franca R; Azapagic A
    Waste Manag; 2020 Jul; 113():359-368. PubMed ID: 32585558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental impact comparison of four options to treat the cellulosic fraction of municipal solid waste (CF-MSW) in green megacities.
    Lee JTE; Ee AWL; Tong YW
    Waste Manag; 2018 Aug; 78():677-685. PubMed ID: 32559959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.