These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 39192726)

  • 21. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurements and modeling of water transport and osmoregulation in a single kidney cell using optical tweezers and videomicroscopy.
    Lúcio AD; Santos RA; Mesquita ON
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041906. PubMed ID: 14682972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wall relaxation in growing stems: comparison of four species and assessment of measurement techniques.
    Cosgrove DJ
    Planta; 1987; 171():266-78. PubMed ID: 11539726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Under pressure, cell walls set the pace.
    Winship LJ; Obermeyer G; Geitmann A; Hepler PK
    Trends Plant Sci; 2010 Jul; 15(7):363-9. PubMed ID: 20483654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protaphorura tricampata, a euedaphic and highly permeable springtail that can sustain activity by osmoregulation during extreme drought.
    Holmstrup M; Bayley M
    J Insect Physiol; 2013 Nov; 59(11):1104-10. PubMed ID: 24035747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the roles of osmolytes for acclimatizing plants to changing environment: a review of potential mechanism.
    Ghosh UK; Islam MN; Siddiqui MN; Khan MAR
    Plant Signal Behav; 2021 Aug; 16(8):1913306. PubMed ID: 34134596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stress relaxation of cell walls and the yield threshold for growth: demonstration and measurement by micro-pressure probe and psychrometer techniques.
    Cosgrove DJ; Van Volkenburgh E; Cleland RE
    Planta; 1984; 162(1):46-54. PubMed ID: 11540811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extension growth of the water mold Achlya: interplay of turgor and wall strength.
    Money NP; Harold FM
    Proc Natl Acad Sci U S A; 1992 May; 89(10):4245-9. PubMed ID: 11607292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of salinity on the metabolism and osmoregulation of selected ontogenetic stages of an Amazon population of Macrobrachium amazonicum shrimp (Decapoda, Palaemonidae).
    Mazzarelli CC; Santos MR; Amorim RV; Augusto A
    Braz J Biol; 2015 May; 75(2):372-9. PubMed ID: 26132021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Body shaping under water stress: osmosensing and osmoregulation of solute transport in bacteria.
    Morbach S; Krämer R
    Chembiochem; 2002 May; 3(5):384-97. PubMed ID: 12007171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osmolyte Adjustments as a Pressure Adaptation in Deep-Sea Chondrichthyan Fishes: An Intraspecific Test in Arctic Skates (Amblyraja hyperborea) along a Depth Gradient.
    Yancey PH; Speers-Roesch B; Atchinson S; Reist JD; Majewski AR; Treberg JR
    Physiol Biochem Zool; 2018; 91(2):788-796. PubMed ID: 29315031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth-induced water potentials and the growth of maize leaves.
    Tang AC; Boyer JS
    J Exp Bot; 2002 Mar; 53(368):489-503. PubMed ID: 11847248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Turgor-driven plant growth applied in a soybean functional-structural plant model.
    Coussement JR; De Swaef T; Lootens P; Steppe K
    Ann Bot; 2020 Sep; 126(4):729-744. PubMed ID: 32304206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation.
    Zia R; Nawaz MS; Siddique MJ; Hakim S; Imran A
    Microbiol Res; 2021 Jan; 242():126626. PubMed ID: 33189069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Passive response of Saccharomyces cerevisiae to osmotic shifts: cell volume variations depending on the physiological state.
    Martinez de Marañon I; Marechal PA; Gervais P
    Biochem Biophys Res Commun; 1996 Oct; 227(2):519-23. PubMed ID: 8878546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Loss of stability-a new model for stress relaxation in plant cell walls.
    Wei C; Lintilhac PM
    J Theor Biol; 2003 Oct; 224(3):305-12. PubMed ID: 12941589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinct early transcriptional regulations by turgor and osmotic potential in the roots of Arabidopsis.
    Crabos A; Huang Y; Boursat T; Maurel C; Ruffel S; Krouk G; Boursiac Y
    J Exp Bot; 2023 Sep; 74(18):5917-5930. PubMed ID: 37603421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Introducing turgor-driven growth dynamics into functional-structural plant models.
    Coussement JR; De Swaef T; Lootens P; Roldán-Ruiz I; Steppe K
    Ann Bot; 2018 Apr; 121(5):849-861. PubMed ID: 29324998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Osmoregulation, solute distribution, and growth in soybean seedlings having low water potentials.
    Meyer RF; Boyer JS
    Planta; 1981 May; 151(5):482-9. PubMed ID: 24302115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Responses of Microorganisms to Osmotic Stress.
    Bremer E; Krämer R
    Annu Rev Microbiol; 2019 Sep; 73():313-334. PubMed ID: 31180805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.