BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3919307)

  • 1. Two contrary modes of chemolithotrophy in the same archaebacterium.
    Segerer A; Stetter KO; Klink F
    Nature; 1985 Feb 28-Mar 6; 313(6005):787-9. PubMed ID: 3919307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria.
    Fischer F; Zillig W; Stetter KO; Schreiber G
    Nature; 1983 Feb; 301(5900):511-3. PubMed ID: 6401847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens.
    Zillig W; Yeats S; Holz I; Böck A; Gropp F; Rettenberger M; Lutz S
    Nature; 1985 Feb 28-Mar 6; 313(6005):789-91. PubMed ID: 2983223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrite oxidation by thermophilic archaebacteria.
    Larsson L; Olsson G; Holst O; Karlsson HT
    Appl Environ Microbiol; 1990 Mar; 56(3):697-701. PubMed ID: 2107795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants of sulphur chemolithoautotrophy in the extremely thermoacidophilic Sulfolobales.
    Zeldes BM; Loder AJ; Counts JA; Haque M; Widney KA; Keller LM; Albers SV; Kelly RM
    Environ Microbiol; 2019 Oct; 21(10):3696-3710. PubMed ID: 31188531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave.
    Chen Y; Wu L; Boden R; Hillebrand A; Kumaresan D; Moussard H; Baciu M; Lu Y; Colin Murrell J
    ISME J; 2009 Sep; 3(9):1093-104. PubMed ID: 19474813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quinones from archaebacteria, II. Different types of quinones from sulphur-dependent archaebacteria.
    Thurl S; Witke W; Buhrow I; Schäfer W
    Biol Chem Hoppe Seyler; 1986 Mar; 367(3):191-7. PubMed ID: 3085688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea.
    Ghosh W; Dam B
    FEMS Microbiol Rev; 2009 Nov; 33(6):999-1043. PubMed ID: 19645821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulphide oxidation to elemental sulphur in a membrane bioreactor: performance and characterization of the selected microbial sulphur-oxidizing community.
    Vannini C; Munz G; Mori G; Lubello C; Verni F; Petroni G
    Syst Appl Microbiol; 2008 Dec; 31(6-8):461-73. PubMed ID: 18814984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiosulfate, polythionates and elemental sulfur assimilation and reduction in the bacterial world.
    Le Faou A; Rajagopal BS; Daniels L; Fauque G
    FEMS Microbiol Rev; 1990 Aug; 6(4):351-81. PubMed ID: 2123394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bacteria of the sulphur cycle.
    Pfennig N; Widdel F
    Philos Trans R Soc Lond B Biol Sci; 1982 Sep; 298(1093):433-41. PubMed ID: 6127734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A possible biochemical missing link among archaebacteria.
    Achenbach-Richter L; Stetter KO; Woese CR
    Nature; 1987 May; 327(6120):348-9. PubMed ID: 11540893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation.
    Barton LL; Fardeau ML; Fauque GD
    Met Ions Life Sci; 2014; 14():237-77. PubMed ID: 25416397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides.
    Zillig W; Holz I; Janekovic D; Klenk HP; Imsel E; Trent J; Wunderl S; Forjaz VH; Coutinho R; Ferreira T
    J Bacteriol; 1990 Jul; 172(7):3959-65. PubMed ID: 2113915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen-oxidizing electron transport components in the hyperthermophilic archaebacterium Pyrodictium brockii.
    Pihl TD; Black LK; Schulman BA; Maier RJ
    J Bacteriol; 1992 Jan; 174(1):137-43. PubMed ID: 1309514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subsurface processes influence oxidant availability and chemoautotrophic hydrogen metabolism in Yellowstone hot springs.
    Lindsay MR; Amenabar MJ; Fecteau KM; Debes RV; Fernandes Martins MC; Fristad KE; Xu H; Hoehler TM; Shock EL; Boyd ES
    Geobiology; 2018 Nov; 16(6):674-692. PubMed ID: 30035368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea.
    Lösekann T; Knittel K; Nadalig T; Fuchs B; Niemann H; Boetius A; Amann R
    Appl Environ Microbiol; 2007 May; 73(10):3348-62. PubMed ID: 17369343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfur-oxidizing chemolithotrophic proteobacteria dominate the microbiota in high arctic thermal springs on Svalbard.
    Reigstad LJ; Jorgensen SL; Lauritzen SE; Schleper C; Urich T
    Astrobiology; 2011 Sep; 11(7):665-78. PubMed ID: 21899440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Sulfurococcus yellowstonii sp. nov/--a new species of iron- and sulfur-oxidizing thermoacidophilic Archaeobacterium].
    Karavaĭko GI; Golyshina OV; Troitskiĭ AV; Val'ekho-Roman KM; Golovacheva RS; Pivovarova TA
    Mikrobiologiia; 1994; 63(4):668-82. PubMed ID: 7845250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial community profiling of the Chinoike Jigoku ("Blood Pond Hell") hot spring in Beppu, Japan: isolation and characterization of Fe(III)-reducing Sulfolobus sp. strain GA1.
    Masaki Y; Tsutsumi K; Hirano S; Okibe N
    Res Microbiol; 2016 Sep; 167(7):595-603. PubMed ID: 27208660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.