These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Gaussian approximation potentials for accurate thermal properties of two-dimensional materials. Kocabaş T; Keçeli M; Vázquez-Mayagoitia Á; Sevik C Nanoscale; 2023 May; 15(19):8772-8780. PubMed ID: 37098822 [TBL] [Abstract][Full Text] [Related]
11. Interatomic Potentials Transferability for Molecular Simulations: A Comparative Study for Platinum, Gold and Silver. Rassoulinejad-Mousavi SM; Zhang Y Sci Rep; 2018 Feb; 8(1):2424. PubMed ID: 29402962 [TBL] [Abstract][Full Text] [Related]
12. Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations. Wang G; Wang C; Zhang X; Li Z; Zhou J; Sun Z iScience; 2024 May; 27(5):109673. PubMed ID: 38646181 [TBL] [Abstract][Full Text] [Related]
13. Transferable machine learning interatomic potential for carbon hydrogen systems. Faraji S; Liu M Phys Chem Chem Phys; 2024 Aug; 26(34):22346-22358. PubMed ID: 39140158 [TBL] [Abstract][Full Text] [Related]
14. First-Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene Heterostructures Empowered by Machine-Learning Interatomic Potentials. Mortazavi B; Silani M; Podryabinkin EV; Rabczuk T; Zhuang X; Shapeev AV Adv Mater; 2021 Sep; 33(35):e2102807. PubMed ID: 34296779 [TBL] [Abstract][Full Text] [Related]
16. Atomic Cluster Expansion for Quantum-Accurate Large-Scale Simulations of Carbon. Qamar M; Mrovec M; Lysogorskiy Y; Bochkarev A; Drautz R J Chem Theory Comput; 2023 Aug; 19(15):5151-5167. PubMed ID: 37347981 [TBL] [Abstract][Full Text] [Related]
17. Efficient Molecular Dynamics Simulations of Deep Eutectic Solvents with First-Principles Accuracy Using Machine Learning Interatomic Potentials. Shayestehpour O; Zahn S J Chem Theory Comput; 2023 Dec; 19(23):8732-8742. PubMed ID: 37972596 [TBL] [Abstract][Full Text] [Related]
18. Exploring the phase change and structure of carbon using a deep learning interatomic potential. Chen K; Yang R; Wang Z; Zhao W; Xu Y; Sun H; Zhang C; Wang S; Ho K; Wang CZ; Su WS Phys Chem Chem Phys; 2024 Oct; 26(40):25936-25945. PubMed ID: 39364607 [TBL] [Abstract][Full Text] [Related]
19. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations. Van Speybroeck V; Bocus M; Cnudde P; Vanduyfhuys L ACS Catal; 2023 Sep; 13(17):11455-11493. PubMed ID: 37671178 [TBL] [Abstract][Full Text] [Related]
20. Performance Assessment of Universal Machine Learning Interatomic Potentials: Challenges and Directions for Materials' Surfaces. Focassio B; M Freitas LP; Schleder GR ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38990833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]