These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 39193946)

  • 1. Accuracy, transferability, and computational efficiency of interatomic potentials for simulations of carbon under extreme conditions.
    Willman JT; Gonzalez JM; Nguyen-Cong K; Hamel S; Lordi V; Oleynik II
    J Chem Phys; 2024 Aug; 161(8):. PubMed ID: 39193946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic cluster expansion potential for large scale simulations of hydrocarbons under shock compression.
    Willman JT; Perriot R; Ticknor C
    J Chem Phys; 2024 Aug; 161(6):. PubMed ID: 39120033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing and Evaluating Machine-Learned Interatomic Potentials for Li-Based Disordered Rocksalts.
    Choyal V; Sagar N; Sai Gautam G
    J Chem Theory Comput; 2024 Jun; 20(11):4844-4856. PubMed ID: 38787289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Molecular-Dynamics Simulations for Solid-Liquid Interfaces with Machine-Learning Interatomic Potentials.
    Hou P; Tian Y; Meng X
    Chemistry; 2024 Sep; 30(49):e202401373. PubMed ID: 38877181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transferability and Accuracy of Ionic Liquid Simulations with Equivariant Machine Learning Interatomic Potentials.
    Goodwin ZAH; Wenny MB; Yang JH; Cepellotti A; Ding J; Bystrom K; Duschatko BR; Johansson A; Sun L; Batzner S; Musaelian A; Mason JA; Kozinsky B; Molinari N
    J Phys Chem Lett; 2024 Aug; 15(30):7539-7547. PubMed ID: 39023916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic modeling of the mechanical properties: the rise of machine learning interatomic potentials.
    Mortazavi B; Zhuang X; Rabczuk T; Shapeev AV
    Mater Horiz; 2023 Jun; 10(6):1956-1968. PubMed ID: 37014053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transferable Water Potentials Using Equivariant Neural Networks.
    Maxson T; Szilvási T
    J Phys Chem Lett; 2024 Apr; 15(14):3740-3747. PubMed ID: 38547514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Interatomic Potentials for Heterogeneous Catalysis.
    Tang D; Ketkaew R; Luber S
    Chemistry; 2024 Oct; 30(60):e202401148. PubMed ID: 39109600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating explicit solvent models of heterogeneous catalysts with machine learning interatomic potentials.
    Chen BWJ; Zhang X; Zhang J
    Chem Sci; 2023 Aug; 14(31):8338-8354. PubMed ID: 37564405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaussian approximation potentials for accurate thermal properties of two-dimensional materials.
    Kocabaş T; Keçeli M; Vázquez-Mayagoitia Á; Sevik C
    Nanoscale; 2023 May; 15(19):8772-8780. PubMed ID: 37098822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interatomic Potentials Transferability for Molecular Simulations: A Comparative Study for Platinum, Gold and Silver.
    Rassoulinejad-Mousavi SM; Zhang Y
    Sci Rep; 2018 Feb; 8(1):2424. PubMed ID: 29402962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations.
    Wang G; Wang C; Zhang X; Li Z; Zhou J; Sun Z
    iScience; 2024 May; 27(5):109673. PubMed ID: 38646181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transferable machine learning interatomic potential for carbon hydrogen systems.
    Faraji S; Liu M
    Phys Chem Chem Phys; 2024 Aug; 26(34):22346-22358. PubMed ID: 39140158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene Heterostructures Empowered by Machine-Learning Interatomic Potentials.
    Mortazavi B; Silani M; Podryabinkin EV; Rabczuk T; Zhuang X; Shapeev AV
    Adv Mater; 2021 Sep; 33(35):e2102807. PubMed ID: 34296779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale machine-learning interatomic potentials for ferromagnetic and liquid iron.
    Byggmästar J; Nikoulis G; Fellman A; Granberg F; Djurabekova F; Nordlund K
    J Phys Condens Matter; 2022 May; 34(30):. PubMed ID: 35550572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic Cluster Expansion for Quantum-Accurate Large-Scale Simulations of Carbon.
    Qamar M; Mrovec M; Lysogorskiy Y; Bochkarev A; Drautz R
    J Chem Theory Comput; 2023 Aug; 19(15):5151-5167. PubMed ID: 37347981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Molecular Dynamics Simulations of Deep Eutectic Solvents with First-Principles Accuracy Using Machine Learning Interatomic Potentials.
    Shayestehpour O; Zahn S
    J Chem Theory Comput; 2023 Dec; 19(23):8732-8742. PubMed ID: 37972596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the phase change and structure of carbon using a deep learning interatomic potential.
    Chen K; Yang R; Wang Z; Zhao W; Xu Y; Sun H; Zhang C; Wang S; Ho K; Wang CZ; Su WS
    Phys Chem Chem Phys; 2024 Oct; 26(40):25936-25945. PubMed ID: 39364607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations.
    Van Speybroeck V; Bocus M; Cnudde P; Vanduyfhuys L
    ACS Catal; 2023 Sep; 13(17):11455-11493. PubMed ID: 37671178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Assessment of Universal Machine Learning Interatomic Potentials: Challenges and Directions for Materials' Surfaces.
    Focassio B; M Freitas LP; Schleder GR
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38990833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.