These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 39194635)

  • 21. Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds.
    Jiang D; Ma Y; Wang Y
    Comput Methods Programs Biomed; 2019 Sep; 178():19-30. PubMed ID: 31416548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-time, automatic, open-source sleep stage classification system using single EEG for mice.
    Tezuka T; Kumar D; Singh S; Koyanagi I; Naoi T; Sakaguchi M
    Sci Rep; 2021 May; 11(1):11151. PubMed ID: 34045518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intelligent automatic sleep staging model based on CNN and LSTM.
    Zhuang L; Dai M; Zhou Y; Sun L
    Front Public Health; 2022; 10():946833. PubMed ID: 35968483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Hierarchical Neural Network for Sleep Stage Classification Based on Comprehensive Feature Learning and Multi-Flow Sequence Learning.
    Sun C; Chen C; Li W; Fan J; Chen W
    IEEE J Biomed Health Inform; 2020 May; 24(5):1351-1366. PubMed ID: 31478877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of feature and classifier algorithms for online automatic sleep staging based on a single EEG signal.
    Radha M; Garcia-Molina G; Poel M; Tononi G
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1876-80. PubMed ID: 25570344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electronic Sleep Stage Classifiers: A Survey and VLSI Design Methodology.
    Kassiri H; Chemparathy A; Salam MT; Boyce R; Adamantidis A; Genov R
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):177-188. PubMed ID: 27333608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A deep learning algorithm for sleep stage scoring in mice based on a multimodal network with fine-tuning technique.
    Akada K; Yagi T; Miura Y; Beuckmann CT; Koyama N; Aoshima K
    Neurosci Res; 2021 Dec; 173():99-105. PubMed ID: 34280429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multivariate analysis of full-term neonatal polysomnographic data.
    Gerla V; Paul K; Lhotska L; Krajca V
    IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):104-10. PubMed ID: 19129029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple classifier systems for automatic sleep scoring in mice.
    Gao V; Turek F; Vitaterna M
    J Neurosci Methods; 2016 May; 264():33-39. PubMed ID: 26928255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. STQS: Interpretable multi-modal Spatial-Temporal-seQuential model for automatic Sleep scoring.
    Pathak S; Lu C; Nagaraj SB; van Putten M; Seifert C
    Artif Intell Med; 2021 Apr; 114():102038. PubMed ID: 33875157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel deep learning model based on transformer and cross modality attention for classification of sleep stages.
    Mostafaei SH; Tanha J; Sharafkhaneh A
    J Biomed Inform; 2024 Sep; 157():104689. PubMed ID: 39029770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms.
    Şen B; Peker M; Çavuşoğlu A; Çelebi FV
    J Med Syst; 2014 Mar; 38(3):18. PubMed ID: 24609509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population.
    Fonseca P; van Gilst MM; Radha M; Ross M; Moreau A; Cerny A; Anderer P; Long X; van Dijk JP; Overeem S
    Sleep; 2020 Sep; 43(9):. PubMed ID: 32249911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A hierarchical sequential neural network with feature fusion for sleep staging based on EOG and RR signals.
    Sun C; Chen C; Fan J; Li W; Zhang Y; Chen W
    J Neural Eng; 2019 Oct; 16(6):066020. PubMed ID: 31394522
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CAttSleepNet: Automatic End-to-End Sleep Staging Using Attention-Based Deep Neural Networks on Single-Channel EEG.
    Li T; Zhang B; Lv H; Hu S; Xu Z; Tuergong Y
    Int J Environ Res Public Health; 2022 Apr; 19(9):. PubMed ID: 35564593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An evolutionary model for sleep quality analytics using fuzzy system.
    Hangaragi S; Nizampatnam N; Kaliyaperumal D; Özer T
    Proc Inst Mech Eng H; 2023 Oct; 237(10):1215-1227. PubMed ID: 37667998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning.
    Shi J; Liu X; Li Y; Zhang Q; Li Y; Ying S
    J Neurosci Methods; 2015 Oct; 254():94-101. PubMed ID: 26192325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Deep Transfer Learning Framework for Sleep Stage Classification with Single-Channel EEG Signals.
    ElMoaqet H; Eid M; Ryalat M; Penzel T
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep convolutional neural network for classification of sleep stages from single-channel EEG signals.
    Mousavi Z; Yousefi Rezaii T; Sheykhivand S; Farzamnia A; Razavi SN
    J Neurosci Methods; 2019 Aug; 324():108312. PubMed ID: 31201824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel deep-learning model based on τ-shaped convolutional network (τNet) with long short-term memory (LSTM) for physiological fatigue detection from EEG and EOG signals.
    He L; Zhang L; Lin X; Qin Y
    Med Biol Eng Comput; 2024 Jun; 62(6):1781-1793. PubMed ID: 38374416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.