These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 39194800)
21. Combining Steinernema carpocapsae and Bacillus thuringienis strains for control of diamondback moth (Plutella xylostella). Yi X; Ehlers RU Commun Agric Appl Biol Sci; 2006; 71(3 Pt A):633-6. PubMed ID: 17390802 [TBL] [Abstract][Full Text] [Related]
22. Resistance Selection and Characterization of Chlorantraniliprole Resistance in Plutella xylostella (Lepidoptera: Plutellidae). Liu X; Wang HY; Ning YB; Qiao K; Wang KY J Econ Entomol; 2015 Aug; 108(4):1978-85. PubMed ID: 26470343 [TBL] [Abstract][Full Text] [Related]
23. Profiling of MicroRNAs in Midguts of Yang J; Xu X; Lin S; Chen S; Lin G; Song Q; Bai J; You M; Xie M Front Genet; 2021; 12():739849. PubMed ID: 34567090 [TBL] [Abstract][Full Text] [Related]
24. Biochemical Mechanisms, Cross-resistance and Stability of Resistance to Metaflumizone in Shen J; Li Z; Li D; Wang R; Zhang S; You H; Li J Insects; 2020 May; 11(5):. PubMed ID: 32429053 [TBL] [Abstract][Full Text] [Related]
25. Throwing Brazilian strains into the melting pot of P. xylostella resistance to Bacillus thuringiensis. De Bortoli CP; Polanczyk RA; Crickmore N J Invertebr Pathol; 2024 Jun; 204():108101. PubMed ID: 38574951 [TBL] [Abstract][Full Text] [Related]
26. A flavin-dependent monooxgenase confers resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella. Mallott M; Hamm S; Troczka BJ; Randall E; Pym A; Grant C; Baxter S; Vogel H; Shelton AM; Field LM; Williamson MS; Paine M; Zimmer CT; Slater R; Elias J; Bass C Insect Biochem Mol Biol; 2019 Dec; 115():103247. PubMed ID: 31626952 [TBL] [Abstract][Full Text] [Related]
27. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.). Guo Z; Kang S; Zhu X; Wu Q; Wang S; Xie W; Zhang Y J Invertebr Pathol; 2015 Mar; 126():21-30. PubMed ID: 25595643 [TBL] [Abstract][Full Text] [Related]
28. Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Ballester V; Granero F; Tabashnik BE; Malvar T; Ferré J Appl Environ Microbiol; 1999 Apr; 65(4):1413-9. PubMed ID: 10103230 [TBL] [Abstract][Full Text] [Related]
29. A versatile contribution of both aminopeptidases N and ABC transporters to Bt Cry1Ac toxicity in the diamondback moth. Sun D; Zhu L; Guo L; Wang S; Wu Q; Crickmore N; Zhou X; Bravo A; Soberón M; Guo Z; Zhang Y BMC Biol; 2022 Feb; 20(1):33. PubMed ID: 35120513 [TBL] [Abstract][Full Text] [Related]
30. Novel-miR-310 mediated response mechanism to Cry1Ac protoxin in Plutella xylostella (L.). Yang J; Chen S; Xu X; Lin G; Lin S; Bai J; Song Q; You M; Xie M Int J Biol Macromol; 2022 Oct; 219():587-596. PubMed ID: 35952810 [TBL] [Abstract][Full Text] [Related]
31. The correlation of the presence and expression levels of cry genes with the insecticidal activities against Plutella xylostella for Bacillus thuringiensis strains. Chen ML; Chen PH; Pang JC; Lin CW; Hwang CF; Tsen HY Toxins (Basel); 2014 Aug; 6(8):2453-70. PubMed ID: 25153253 [TBL] [Abstract][Full Text] [Related]
32. Tritrophic choice experiments with bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae. Schuler TH; Potting RP; Denholm I; Clark SJ; Clark AJ; Stewart CN; Poppy GM Transgenic Res; 2003 Jun; 12(3):351-61. PubMed ID: 12779123 [TBL] [Abstract][Full Text] [Related]
33. An investigation of the molecular and biochemical basis underlying chlorantraniliprole-resistant Drosophila strains and their cross-resistance to other insecticides. Kim AY; Kwon DH; Jeong IH; Koh YH Arch Insect Biochem Physiol; 2018 Dec; 99(4):e21514. PubMed ID: 30397935 [TBL] [Abstract][Full Text] [Related]
34. Resistance and fitness costs in diamondback moths after selection using broflanilide, a novel meta-diamide insecticide. Sun X; Wei R; Li L; Zhu B; Liang P; Gao X Insect Sci; 2022 Feb; 29(1):188-198. PubMed ID: 33860634 [TBL] [Abstract][Full Text] [Related]
35. Novel genetic factors involved in resistance to Bacillus thuringiensis in Plutella xylostella. Ayra-Pardo C; Raymond B; Gulzar A; Rodríguez-Cabrera L; Morán-Bertot I; Crickmore N; Wright DJ Insect Mol Biol; 2015 Dec; 24(6):589-600. PubMed ID: 26335439 [TBL] [Abstract][Full Text] [Related]
36. Effect of midgut proteolytic activity on susceptibility of lepidopteran larvae to Bacillus thuringiensis subsp. Kurstaki. Talaei-Hassanloui R; Bakhshaei R; Hosseininaveh V; Khorramnezhad A Front Physiol; 2013; 4():406. PubMed ID: 24474937 [TBL] [Abstract][Full Text] [Related]
37. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth. Guo Z; Kang S; Chen D; Wu Q; Wang S; Xie W; Zhu X; Baxter SW; Zhou X; Jurat-Fuentes JL; Zhang Y PLoS Genet; 2015 Apr; 11(4):e1005124. PubMed ID: 25875245 [TBL] [Abstract][Full Text] [Related]
38. [Behavioral response and adaptive cost in resistant and susceptible Passos DA; Silva-Torres CSA; Siqueira HAA Bull Entomol Res; 2020 Feb; 110(1):96-105. PubMed ID: 31190656 [TBL] [Abstract][Full Text] [Related]
39. Characterization and expression profiling of glutathione S-transferases in the diamondback moth, Plutella xylostella (L.). You Y; Xie M; Ren N; Cheng X; Li J; Ma X; Zou M; Vasseur L; Gurr GM; You M BMC Genomics; 2015 Mar; 16(1):152. PubMed ID: 25887517 [TBL] [Abstract][Full Text] [Related]
40. Insecticidal Effects of Organotin(IV) Compounds on Plutella Xylostella (L.) Larvae. II. Inhibitory Potencies Against Acetylcholinesterase and Evidence for Synergism in Tests With Bacillus Thuringiensis(BER.) and Malathion. Ahmad NW; Huang TS; Balabaskaran S; Lo KM; Das VG Met Based Drugs; 1994; 1(1):1-17. PubMed ID: 18476213 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]