These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 39195429)
1. Stability and Performance of Commercial Membranes in High-Temperature Organic Flow Batteries. Van Cauter CJ; Li Y; Van Herck S; Vankelecom IFJ Membranes (Basel); 2024 Aug; 14(8):. PubMed ID: 39195429 [TBL] [Abstract][Full Text] [Related]
2. Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes. Ye C; Wang A; Breakwell C; Tan R; Grazia Bezzu C; Hunter-Sellars E; Williams DR; Brandon NP; Klusener PAA; Kucernak AR; Jelfs KE; McKeown NB; Song Q Nat Commun; 2022 Jun; 13(1):3184. PubMed ID: 35676263 [TBL] [Abstract][Full Text] [Related]
3. Mixture of Anthraquinone Sulfo-Derivatives as an Inexpensive Organic Flow Battery Negolyte: Optimization of Battery Cell. Petrov M; Chikin D; Abunaeva L; Glazkov A; Pichugov R; Vinyukov A; Levina I; Motyakin M; Mezhuev Y; Konev D; Antipov A Membranes (Basel); 2022 Sep; 12(10):. PubMed ID: 36295671 [TBL] [Abstract][Full Text] [Related]
4. A pH-Neutral, Metal-Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte. Hu B; Luo J; Hu M; Yuan B; Liu TL Angew Chem Int Ed Engl; 2019 Nov; 58(46):16629-16636. PubMed ID: 31381221 [TBL] [Abstract][Full Text] [Related]
5. Correlating Stability and Performance of NaSICON Membranes for Aqueous Redox Flow Batteries. Modak S; Valle J; Tseng KT; Sakamoto J; Kwabi DG ACS Appl Mater Interfaces; 2022 May; 14(17):19332-19341. PubMed ID: 35442617 [TBL] [Abstract][Full Text] [Related]
6. Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling. Milton M; Cheng Q; Yang Y; Nuckolls C; Hernández Sánchez R; Sisto TJ Nano Lett; 2017 Dec; 17(12):7859-7863. PubMed ID: 29125302 [TBL] [Abstract][Full Text] [Related]
7. Swelling-Induced Quaternized Anthrone-Containing Poly(aryl ether ketone) Membranes with Low Area Resistance and High Ion Selectivity for Vanadium Flow Batteries. Zhang B; Fu Y; Liu Q; Li L; Zhang X; Yang Z; Zhang E; Wang K; Wang G; Zhang Z; Zhang S ACS Appl Mater Interfaces; 2022 Nov; 14(45):50858-50869. PubMed ID: 36331393 [TBL] [Abstract][Full Text] [Related]
8. Thin Film Composite Membranes with Regulated Crossover and Water Migration for Long-Life Aqueous Redox Flow Batteries. Tan R; Wang A; Ye C; Li J; Liu D; Darwich BP; Petit L; Fan Z; Wong T; Alvarez-Fernandez A; Furedi M; Guldin S; Breakwell CE; Klusener PAA; Kucernak AR; Jelfs KE; McKeown NB; Song Q Adv Sci (Weinh); 2023 Jul; 10(20):e2206888. PubMed ID: 37178400 [TBL] [Abstract][Full Text] [Related]
9. Alkaline all iron redox flow battery with a polyethylene/poly(styrene- Sreenath S; Sharma NK; Nagarale RK RSC Adv; 2020 Dec; 10(73):44824-44833. PubMed ID: 36381542 [TBL] [Abstract][Full Text] [Related]
10. Constructing Microporous Ion Exchange Membranes via Simple Hypercrosslinking for pH-Neutral Aqueous Organic Redox Flow Batteries. Peng K; Zhang C; Fang J; Cai H; Ling R; Ma Y; Tang G; Zuo P; Yang Z; Xu T Angew Chem Int Ed Engl; 2024 Sep; 63(37):e202407372. PubMed ID: 38895749 [TBL] [Abstract][Full Text] [Related]
11. A pH-Neutral, Aqueous Redox Flow Battery with a 3600-Cycle Lifetime: Micellization-Enabled High Stability and Crossover Suppression. Chai J; Wang X; Lashgari A; Williams CK; Jiang JJ ChemSusChem; 2020 Aug; 13(16):4069-4077. PubMed ID: 32658334 [TBL] [Abstract][Full Text] [Related]
13. High Performance of Anion Exchange Blend Membranes Based on Novel Phosphonium Cation Polymers for All-Vanadium Redox Flow Battery Applications. Arunachalam M; Sinopoli A; Aidoudi F; Creager SE; Smith R; Merzougui B; Aïssa B ACS Appl Mater Interfaces; 2021 Sep; 13(38):45935-45943. PubMed ID: 34533936 [TBL] [Abstract][Full Text] [Related]
14. Ion conducting membranes for aqueous flow battery systems. Yuan Z; Zhang H; Li X Chem Commun (Camb); 2018 Jul; 54(55):7570-7588. PubMed ID: 29876555 [TBL] [Abstract][Full Text] [Related]
15. Lithium Ferrocyanide Catholyte for High-Energy and Low-cost Aqueous Redox Flow Batteries. Li X; Yao Y; Liu C; Jia X; Jian J; Guo B; Lu S; Qin W; Wang Q; Wu X Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202304667. PubMed ID: 37081714 [TBL] [Abstract][Full Text] [Related]
16. Study of Anion Exchange Membrane Properties Incorporating Tsehaye MT; Yang X; Janoschka T; Hager MD; Schubert US; Alloin F; Iojoiu C Membranes (Basel); 2021 May; 11(5):. PubMed ID: 34070143 [TBL] [Abstract][Full Text] [Related]
17. Stable and Highly Ion-Selective Membrane Made from Cellulose Nanocrystals for Aqueous Redox Flow Batteries. Mukhopadhyay A; Cheng Z; Natan A; Ma Y; Yang Y; Cao D; Wang W; Zhu H Nano Lett; 2019 Dec; 19(12):8979-8989. PubMed ID: 31702931 [TBL] [Abstract][Full Text] [Related]
18. PEGylation-Enabled Extended Cyclability of a Non-aqueous Redox Flow Battery. Chai J; Lashgari A; Cao Z; Williams CK; Wang X; Dong J; Jiang JJ ACS Appl Mater Interfaces; 2020 Apr; 12(13):15262-15270. PubMed ID: 32150369 [TBL] [Abstract][Full Text] [Related]
19. High-stable all-iron redox flow battery with innovative anolyte based on steric hindrance regulation. Yang J; Wei W; Zhou C; Yan H; Che H; Hao L; Tan X; Robertson AW; Wu TS; Soo YL; Tang A; Sun Z Angew Chem Int Ed Engl; 2024 Aug; ():e202414452. PubMed ID: 39205492 [TBL] [Abstract][Full Text] [Related]
20. Protocol for Evaluating Anion Exchange Membranes for Nonaqueous Redox Flow Batteries. Tami JL; Mazumder MMR; Cook GE; Minteer SD; McNeil AJ ACS Appl Mater Interfaces; 2024 Oct; 16(40):53643-53651. PubMed ID: 39344264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]