These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 39196598)

  • 21. Platinum-Tin/Tin Oxide/CNT Catalysts for High-Performance Electrocatalytic Ethanol Oxidation.
    Zheng Z; Jiang Q; Cheng X; Han X; Kuang Q; Xie Z
    Chemistry; 2022 Jan; 28(4):e202103521. PubMed ID: 34788502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zeolite-confined subnanometric PtSn mimicking mortise-and-tenon joinery for catalytic propane dehydrogenation.
    Ma S; Liu ZP
    Nat Commun; 2022 May; 13(1):2716. PubMed ID: 35581210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface Hexagonal Pt
    Ye C; Peng M; Wang Y; Zhang N; Wang D; Jiao M; Miller JT
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25903-25909. PubMed ID: 32423194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit.
    Motagamwala AH; Almallahi R; Wortman J; Igenegbai VO; Linic S
    Science; 2021 Jul; 373(6551):217-222. PubMed ID: 34244414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective Catalytic Behavior Induced by Crystal-Phase Transformation in Well-Defined Bimetallic Pt-Sn Nanocrystals.
    Werghi B; Wu L; Ebrahim AM; Chi M; Ni H; Cargnello M; Bare SR
    Small; 2023 May; 19(20):e2207956. PubMed ID: 36807838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GaPt Supported Catalytically Active Liquid Metal Solution Catalysis for Propane Dehydrogenation-Support Influence and Coking Studies.
    Raman N; Wolf M; Heller M; Heene-Würl N; Taccardi N; Haumann M; Felfer P; Wasserscheid P
    ACS Catal; 2021 Nov; 11(21):13423-13433. PubMed ID: 34777909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonoxidative dehydrogenation of propane using boron-incorporated silica-supported Pt Sites synthesized by atomic layer deposition.
    Çelik G
    Turk J Chem; 2024; 48(1):166-175. PubMed ID: 38544896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-dimensional Ga
    Han X; Yang Y; Chen R; Zhou J; Yang X; Wang X; Ji H
    J Colloid Interface Sci; 2024 Jul; 666():76-87. PubMed ID: 38583212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermally Stable and Regenerable Platinum-Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria.
    Xiong H; Lin S; Goetze J; Pletcher P; Guo H; Kovarik L; Artyushkova K; Weckhuysen BM; Datye AK
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):8986-8991. PubMed ID: 28598531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Propane dehydrogenation over Pt-Cu bimetallic catalysts: the nature of coke deposition and the role of copper.
    Han Z; Li S; Jiang F; Wang T; Ma X; Gong J
    Nanoscale; 2014 Sep; 6(17):10000-8. PubMed ID: 24933477
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Composite Structured M/Ce
    Ruban N; Rogozhnikov V; Zazhigalov S; Zagoruiko A; Emelyanov V; Snytnikov P; Sobyanin V; Potemkin D
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-temperature propane oxidative dehydrogenation over UiO-66 supported vanadia catalysts: Role of support confinement effects.
    Farzaneh A; Moghaddam MS
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):404-416. PubMed ID: 36166967
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction of a Unique Structure of Ru Sites in the RuP Structure for Propane Dehydrogenation.
    Yang T; Zhong Y; Li J; Ma R; Yan H; Liu Y; He Y; Li D
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33045-33055. PubMed ID: 34232010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pt/Al
    Zhu D; Weng X; Tang Y; Sun J; Zheng S; Xu Z
    RSC Adv; 2020 Apr; 10(24):14208-14216. PubMed ID: 35498490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The stability and catalytic performance of K-modified molybdena supported on a titanate nanostructured catalyst in the oxidative dehydrogenation of propane.
    Goudarzi E; Asadi R; Darian JT; Shahbazi Kootenaei A
    RSC Adv; 2019 Apr; 9(21):11797-11809. PubMed ID: 35517039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalytic Behavior of Chromium Oxide Supported on Nanocasting-Prepared Mesoporous Alumina in Dehydrogenation of Propane.
    Węgrzyniak A; Jarczewski S; Węgrzynowicz A; Michorczyk B; Kuśtrowski P; Michorczyk P
    Nanomaterials (Basel); 2017 Sep; 7(9):. PubMed ID: 28862670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic decomposition and mechanism of formaldehyde over Pt-Al
    Zhu X; Yu J; Jiang C; Cheng B
    Phys Chem Chem Phys; 2017 Mar; 19(10):6957-6963. PubMed ID: 28239732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Productive Propane Dehydrogenation Catalyst Using Silica-Supported Ga-Pt Nanoparticles Generated from Single-Sites.
    Searles K; Chan KW; Mendes Burak JA; Zemlyanov D; Safonova O; Copéret C
    J Am Chem Soc; 2018 Sep; 140(37):11674-11679. PubMed ID: 30145890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective and Stable Non-Noble-Metal Intermetallic Compound Catalyst for the Direct Dehydrogenation of Propane to Propylene.
    He Y; Song Y; Cullen DA; Laursen S
    J Am Chem Soc; 2018 Oct; 140(43):14010-14014. PubMed ID: 30346723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Active and Regenerable Nanometric High-Entropy Catalyst for Efficient Propane Dehydrogenation.
    Zhou SZ; Li WC; He B; Xie YD; Wang H; Liu X; Chen L; Wei J; Lu AH
    Angew Chem Int Ed Engl; 2024 Oct; 63(43):e202410835. PubMed ID: 39044707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.