These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 39197165)

  • 1. Combining Clinical-Radiomics Features With Machine Learning Methods for Building Models to Predict Postoperative Recurrence in Patients With Chronic Subdural Hematoma: Retrospective Cohort Study.
    Fang C; Ji X; Pan Y; Xie G; Zhang H; Li S; Wan J
    J Med Internet Res; 2024 Aug; 26():e54944. PubMed ID: 39197165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-crescent sign as a predictor of chronic subdural hematoma recurrence following burr-hole surgery.
    Miki K; Abe H; Morishita T; Hayashi S; Yagi K; Arima H; Inoue T
    J Neurosurg; 2019 Dec; 131(6):1905-1911. PubMed ID: 30611142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic minority over-sampling technique-enhanced machine learning models for predicting recurrence of postoperative chronic subdural hematoma.
    Ni Z; Zhu Y; Qian Y; Li X; Xing Z; Zhou Y; Chen Y; Huang L; Yang J; Zhuge Q
    Front Neurol; 2024; 15():1305543. PubMed ID: 38711558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Hematoma Expansion and Prognosis in Cerebral Contusions: A Radiomics-Clinical Approach.
    He H; Liu J; Li C; Guo Y; Liang K; Du J; Xue J; Liang Y; Chen P; Liu L; Cui M; Wang J; Liu Y; Tian S; Deng Y
    J Neurotrauma; 2024 Jun; 41(11-12):1337-1352. PubMed ID: 38326935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Contrasted CT Radiomics for SAH Prognosis Prediction.
    Shan D; Wang J; Qi P; Lu J; Wang D
    Bioengineering (Basel); 2023 Aug; 10(8):. PubMed ID: 37627852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. External validation and modification of the Oslo grading system for prediction of postoperative recurrence of chronic subdural hematoma.
    Won SY; Dubinski D; Eibach M; Gessler F; Herrmann E; Keil F; Seifert V; Konczalla J; Behmanesh B
    Neurosurg Rev; 2021 Apr; 44(2):961-970. PubMed ID: 32112162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the performance of both machine learning models using PET and CT radiomics for predicting recurrence following lung stereotactic body radiation therapy: A single-institutional study.
    Nemoto H; Saito M; Satoh Y; Komiyama T; Marino K; Aoki S; Suzuki H; Sano N; Nonaka H; Watanabe H; Funayama S; Onishi H
    J Appl Clin Med Phys; 2024 Jul; 25(7):e14322. PubMed ID: 38436611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of early hematoma expansion of spontaneous intracerebral hemorrhage based on deep learning radiomics features of noncontrast computed tomography.
    Feng C; Ding Z; Lao Q; Zhen T; Ruan M; Han J; He L; Shen Q
    Eur Radiol; 2024 May; 34(5):2908-2920. PubMed ID: 37938384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Develop a radiomics-based machine learning model to predict the stone-free rate post-percutaneous nephrolithotomy.
    Zou XC; Luo CW; Yuan RM; Jin MN; Zeng T; Chao HC
    Urolithiasis; 2024 Apr; 52(1):64. PubMed ID: 38613668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study.
    Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X
    Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of machine learning models for predicting unfavorable functional outcomes from preoperative data in patients with chronic subdural hematomas.
    Fuse Y; Nagashima Y; Nishiwaki H; Ohka F; Muramatsu Y; Araki Y; Nishimura Y; Ienaga J; Nagatani T; Seki Y; Watanabe K; Ohno K; Saito R
    Sci Rep; 2023 Oct; 13(1):16997. PubMed ID: 37813949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Value of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinoma].
    Yu YX; Hu CH; Wang XM; Fan YF; Hu MJ; Shi C; Hu S; Zhu M; Zhang Y
    Zhonghua Yi Xue Za Zhi; 2021 May; 101(17):1239-1245. PubMed ID: 34865392
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparative assessment of the capability of machine learning-based radiomic models for predicting omental metastasis in locally advanced gastric cancer.
    Wu A; Luo L; Zeng Q; Wu C; Shu X; Huang P; Wang Z; Hu T; Feng Z; Tu Y; Zhu Y; Cao Y; Li Z
    Sci Rep; 2024 Jul; 14(1):16208. PubMed ID: 39003337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning models for differential diagnosing HER2-low breast cancer: A radiomics approach.
    Chen X; Li M; Su D
    Medicine (Baltimore); 2024 Aug; 103(33):e39343. PubMed ID: 39151526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computed tomography-based radiomics to predict early recurrence of hepatocellular carcinoma post-hepatectomy in patients background on cirrhosis.
    Qian GX; Xu ZL; Li YH; Lu JL; Bu XY; Wei MT; Jia WD
    World J Gastroenterol; 2024 Apr; 30(15):2128-2142. PubMed ID: 38681988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a Comprehensive Model Based on CT Radiomics and Clinical Features for Postoperative Recurrence Risk Prediction in Non-small Cell Lung Cancer.
    Wang P; Luo Z; Luo C; Wang T
    Acad Radiol; 2024 Jun; 31(6):2579-2590. PubMed ID: 38172022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis.
    Wang SR; Cao CL; Du TT; Wang JL; Li J; Li WX; Chen M
    J Ultrasound Med; 2024 Sep; 43(9):1611-1625. PubMed ID: 38808580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The management and outcome for patients with chronic subdural hematoma: a prospective, multicenter, observational cohort study in the United Kingdom.
    Brennan PM; Kolias AG; Joannides AJ; Shapey J; Marcus HJ; Gregson BA; Grover PJ; Hutchinson PJ; Coulter IC;
    J Neurosurg; 2017 Oct; 127(4):732-739. PubMed ID: 27834599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of a machine learning-based predictive model for assessing the 90-day prognostic outcome of patients with spontaneous intracerebral hemorrhage.
    Geng Z; Yang C; Zhao Z; Yan Y; Guo T; Liu C; Wu A; Wu X; Wei L; Tian Y; Hu P; Wang K
    J Transl Med; 2024 Mar; 22(1):236. PubMed ID: 38439097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning model based on enhanced CT radiomics for the preoperative prediction of lymphovascular invasion in esophageal squamous cell carcinoma.
    Wang Y; Bai G; Huang M; Chen W
    Front Oncol; 2024; 14():1308317. PubMed ID: 38549935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.