These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39198137)

  • 21. Liver T2-weighted MR imaging: comparison of fast and conventional half-Fourier single-shot turbo spin-echo, breath-hold turbo spin-echo, and respiratory-triggered turbo spin-echo sequences.
    Tang Y; Yamashita Y; Namimoto T; Abe Y; Takahashi M
    Radiology; 1997 Jun; 203(3):766-72. PubMed ID: 9169702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo sequence: improvement of the image quality of oxygen-enhanced MRI.
    Ohno Y; Hatabu H; Higashino T; Kawamitsu H; Watanabe H; Takenaka D; van Cauteren M; Sugimura K
    Eur J Radiol; 2004 Nov; 52(2):200-5. PubMed ID: 15489080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accelerated High-Resolution Deep Learning Reconstruction Turbo Spin Echo MRI of the Knee at 7 T.
    Marth AA; von Deuster C; Sommer S; Feuerriegel GC; Goller SS; Sutter R; Nanz D
    Invest Radiol; 2024 Dec; 59(12):831-837. PubMed ID: 38960863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of a Deep Learning-Based Superresolution Algorithm Tailored to Partial Fourier Gradient Echo Sequences of the Abdomen at 1.5 T: Reduction of Breath-Hold Time and Improvement of Image Quality.
    Afat S; Wessling D; Afat C; Nickel D; Arberet S; Herrmann J; Othman AE; Gassenmaier S
    Invest Radiol; 2022 Mar; 57(3):157-162. PubMed ID: 34510101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prospective Comparison of Standard and Deep Learning-reconstructed Turbo Spin-Echo MRI of the Shoulder.
    Xie Y; Tao H; Li X; Hu Y; Liu C; Zhou B; Cai J; Nickel D; Fu C; Xiong B; Chen S
    Radiology; 2024 Jan; 310(1):e231405. PubMed ID: 38193842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep learning-accelerated image reconstruction in MRI of the orbit to shorten acquisition time and enhance image quality.
    Estler A; Zerweck L; Brunnée M; Estler B; Richter V; Örgel A; Bürkle E; Becker H; Hurth H; Stahl S; Konrad EM; Kelbsch C; Ernemann U; Hauser TK; Gohla G
    J Neuroimaging; 2024; 34(2):232-240. PubMed ID: 38195858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feasibility of deep learning-reconstructed thin-slice single-breath-hold HASTE for detecting pancreatic lesions: A comparison with two conventional T2-weighted imaging sequences.
    Liu K; Li Q; Wang X; Fu C; Sun H; Chen C; Zeng M
    Res Diagn Interv Imaging; 2024 Mar; 9():100038. PubMed ID: 39076579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning reconstructed T2-weighted Dixon imaging of the spine: Impact on acquisition time and image quality.
    Berkarda Z; Wiedemann S; Wilpert C; Strecker R; Koerzdoerfer G; Nickel D; Bamberg F; Benndorf M; Mayrhofer T; Russe MF; Weiss J; Diallo TD
    Eur J Radiol; 2024 Sep; 178():111633. PubMed ID: 39067266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous Highly Efficient Contrast-Free Lumen and Vessel Wall MR Imaging for Anatomical Assessment of Aortic Disease.
    Munoz C; Fotaki A; Hua A; Hajhosseiny R; Kunze KP; Ismail TF; Neji R; Pushparajah K; Botnar RM; Prieto C
    J Magn Reson Imaging; 2023 Oct; 58(4):1110-1122. PubMed ID: 36757267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accelerated Diffusion-Weighted Magnetic Resonance Imaging of the Liver at 1.5 T With Deep Learning-Based Image Reconstruction: Impact on Image Quality and Lesion Detection.
    Ginocchio LA; Jaglan S; Tong A; Smereka PN; Benkert T; Chandarana H; Shanbhogue KP
    J Comput Assist Tomogr; 2024 Nov-Dec 01; 48(6):853-858. PubMed ID: 38722777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Half-fourier acquisition single-shot turbo spin-echo (HASTE) MR: comparison with fast spin-echo MR in diseases of the brain.
    Patel MR; Klufas RA; Alberico RA; Edelman RR
    AJNR Am J Neuroradiol; 1997 Oct; 18(9):1635-40. PubMed ID: 9367310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of deep learning-based reconstruction and anti-peristaltic agent on the image quality and diagnostic performance of magnetic resonance enterography comparing single breath-hold single-shot fast spin echo with and without anti-peristaltic agent.
    Park EJ; Lee Y; Lee HJ; Son JH; Yi J; Hahn S; Lee J
    Quant Imaging Med Surg; 2024 Jan; 14(1):722-735. PubMed ID: 38223037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MR cholangiopancreatography of pancreaticobiliary diseases: comparing single-shot RARE and multislice HASTE sequences.
    Lee MG; Jeong YK; Kim MH; Lee SG; Kang EM; Chien D; Shin YM; Ha HK; Kim PN; Auh YH
    AJR Am J Roentgenol; 1998 Dec; 171(6):1539-45. PubMed ID: 9843285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive Clinical Evaluation of a Deep Learning-Accelerated, Single-Breath-Hold Abdominal HASTE at 1.5 T and 3 T.
    Herrmann J; Wessling D; Nickel D; Arberet S; Almansour H; Afat C; Afat S; Gassenmaier S; Othman AE
    Acad Radiol; 2023 Jan; 30(1):93-102. PubMed ID: 35469719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. T2-weighted MR imaging of the uterus: comparison of optimized fast spin-echo and HASTE sequences with conventional fast spin-echo sequences.
    Gryspeerdt S; Van Hoe L; Bosmans H; Baert AL; Vergote I; Marchal G
    AJR Am J Roentgenol; 1998 Jul; 171(1):211-5. PubMed ID: 9648791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Learning Reconstruction Enables Highly Accelerated Biparametric MR Imaging of the Prostate.
    Johnson PM; Tong A; Donthireddy A; Melamud K; Petrocelli R; Smereka P; Qian K; Keerthivasan MB; Chandarana H; Knoll F
    J Magn Reson Imaging; 2022 Jul; 56(1):184-195. PubMed ID: 34877735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Small hepatic lesions found on single-phase helical CT in patients with malignancy: diagnostic capability of breath-hold, multisection fluid-attenuated inversion-recovery (FLAIR) MR imaging using a half-fourier acquisition single-shot turbo spin-echo (HASTE) sequence.
    Sasaki K; Ito K; Fujita T; Shimizu A; Yasui M; Hayashida M; Tanabe M; Matsunaga N
    J Magn Reson Imaging; 2007 Jan; 25(1):129-36. PubMed ID: 17152052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Deep Learning Reconstruction on Respiratory-triggered T2-weighted MR Imaging of the Liver: A Comparison between the Single-shot Fast Spin-echo and Fast Spin-echo Sequences.
    Kiso K; Tsuboyama T; Onishi H; Ogawa K; Nakamoto A; Tatsumi M; Ota T; Fukui H; Yano K; Honda T; Kakemoto S; Koyama Y; Tarewaki H; Tomiyama N
    Magn Reson Med Sci; 2024 Apr; 23(2):214-224. PubMed ID: 36990740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep Learning-reconstructed Parallel Accelerated Imaging for Knee MRI.
    Lee SM; Kim M; Park C; Lee D; Kim KS; Jeong HS; Choi MH
    Curr Med Imaging; 2024; 20():e240523217293. PubMed ID: 37226797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Utility of Thin-slice Fat-suppressed Single-shot T2-weighted MR Imaging with Deep Learning Image Reconstruction as a Protocol for Evaluating the Pancreas.
    Shimada R; Sofue K; Ueno Y; Wakayama T; Yamaguchi T; Ueshima E; Kusaka A; Hori M; Murakami T
    Magn Reson Med Sci; 2024 Jun; ():. PubMed ID: 38910138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.