These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39198137)
41. Calculation of T2 relaxation time from ultrafast single shot sequences for differentiation of liver tumors: comparison of echo-planar, HASTE, and spin-echo sequences. Abe Y; Yamashita Y; Tang Y; Namimoto T; Takahashi M Radiat Med; 2000; 18(1):7-14. PubMed ID: 10852650 [TBL] [Abstract][Full Text] [Related]
42. Comparison of HASTE and segmented-HASTE sequences with a T2-weighted fast spin-echo sequence in the screening evaluation of the brain. Sugahara T; Korogi Y; Hirai T; Hamatake S; Ikushima I; Shigematu Y; Takahashi M AJR Am J Roentgenol; 1997 Nov; 169(5):1401-10. PubMed ID: 9353469 [TBL] [Abstract][Full Text] [Related]
43. T2 Turbo Spin Echo With Compressed Sensing and Propeller Acquisition (Sampling k-Space by Utilizing Rotating Blades) for Fast and Motion Robust Prostate MRI: Comparison With Conventional Acquisition. Bischoff LM; Katemann C; Isaak A; Mesropyan N; Wichtmann B; Kravchenko D; Endler C; Kuetting D; Pieper CC; Ellinger J; Weber O; Attenberger U; Luetkens JA Invest Radiol; 2023 Mar; 58(3):209-215. PubMed ID: 36070533 [TBL] [Abstract][Full Text] [Related]
44. Deep Learning Super-Resolution Reconstruction for Fast and Motion-Robust T2-weighted Prostate MRI. Bischoff LM; Peeters JM; Weinhold L; Krausewitz P; Ellinger J; Katemann C; Isaak A; Weber OM; Kuetting D; Attenberger U; Pieper CC; Sprinkart AM; Luetkens JA Radiology; 2023 Sep; 308(3):e230427. PubMed ID: 37750774 [TBL] [Abstract][Full Text] [Related]
45. Comparison of model-based versus deep learning-based image reconstruction for thin-slice T2-weighted spin-echo prostate MRI. Riederer SJ; Borisch EA; Froemming AT; Kawashima A; Takahashi N Abdom Radiol (NY); 2024 Aug; 49(8):2921-2931. PubMed ID: 38520510 [TBL] [Abstract][Full Text] [Related]
46. Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time. Kaniewska M; Deininger-Czermak E; Getzmann JM; Wang X; Lohezic M; Guggenberger R Eur Radiol; 2023 Mar; 33(3):1513-1525. PubMed ID: 36166084 [TBL] [Abstract][Full Text] [Related]
48. Deep learning-based reconstruction for acceleration of lumbar spine MRI: a prospective comparison with standard MRI. Yoo H; Yoo RE; Choi SH; Hwang I; Lee JY; Seo JY; Koh SY; Choi KS; Kang KM; Yun TJ Eur Radiol; 2023 Dec; 33(12):8656-8668. PubMed ID: 37498386 [TBL] [Abstract][Full Text] [Related]
49. Impact of Deep-Learning Based Reconstruction on Single-Breath-Hold, Single-Shot Fast Spin-Echo in MR Enterography for Crohn's Disease. Park EJ; Lee Y; Lee J J Korean Soc Radiol; 2023 Nov; 84(6):1309-1323. PubMed ID: 38107694 [TBL] [Abstract][Full Text] [Related]
50. Deep learning-accelerated image reconstruction in back pain-MRI imaging: reduction of acquisition time and improvement of image quality. Estler A; Hauser TK; Brunnée M; Zerweck L; Richter V; Knoppik J; Örgel A; Bürkle E; Adib SD; Hengel H; Nikolaou K; Ernemann U; Gohla G Radiol Med; 2024 Mar; 129(3):478-487. PubMed ID: 38349416 [TBL] [Abstract][Full Text] [Related]
51. Increased Speed and Image Quality for Pelvic Single-Shot Fast Spin-Echo Imaging with Variable Refocusing Flip Angles and Full-Fourier Acquisition. Loening AM; Litwiller DV; Saranathan M; Vasanawala SS Radiology; 2017 Feb; 282(2):561-568. PubMed ID: 27564132 [TBL] [Abstract][Full Text] [Related]
52. Deep learning reconstruction for lumbar spine MRI acceleration: a prospective study. Tang H; Hong M; Yu L; Song Y; Cao M; Xiang L; Zhou Y; Suo S Eur Radiol Exp; 2024 Jun; 8(1):67. PubMed ID: 38902467 [TBL] [Abstract][Full Text] [Related]
53. Deep Learning MRI Reconstruction for Accelerating Turbo Spin Echo Hand and Wrist Imaging: A Comparison of Image Quality, Visualization of Anatomy, and Detection of Common Pathologies with Standard Imaging. Herrmann J; Gassenmaier S; Keller G; Koerzdoerfer G; Almansour H; Nickel D; Othman A; Afat S; Werner S Acad Radiol; 2023 Nov; 30(11):2606-2615. PubMed ID: 36797172 [TBL] [Abstract][Full Text] [Related]
54. Deep Learning Reconstruction of Prospectively Accelerated MRI of the Pancreas: Clinical Evaluation of Shortened Breath-Hold Examinations With Dixon Fat Suppression. Chaika M; Brendel JM; Ursprung S; Herrmann J; Gassenmaier S; Brendlin A; Werner S; Nickel MD; Nikolaou K; Afat S; Almansour H Invest Radiol; 2024 Jul; ():. PubMed ID: 39043213 [TBL] [Abstract][Full Text] [Related]
55. The value of non-echo planar HASTE diffusion-weighted MR imaging in the detection, localisation and prediction of extent of postoperative cholesteatoma. Khemani S; Lingam RK; Kalan A; Singh A Clin Otolaryngol; 2011 Aug; 36(4):306-12. PubMed ID: 21564557 [TBL] [Abstract][Full Text] [Related]
56. Comparative analysis of image quality and interchangeability between standard and deep learning-reconstructed T2-weighted spine MRI. Lee S; Jung JY; Chung H; Lee HS; Nickel D; Lee J; Lee SY Magn Reson Imaging; 2024 Jun; 109():211-220. PubMed ID: 38513791 [TBL] [Abstract][Full Text] [Related]
57. Magnetic resonance imaging of the upper abdomen using a free-breathing T2-weighted turbo spin echo sequence with navigator triggered prospective acquisition correction. Klessen C; Asbach P; Kroencke TJ; Fischer T; Warmuth C; Stemmer A; Hamm B; Taupitz M J Magn Reson Imaging; 2005 May; 21(5):576-82. PubMed ID: 15834908 [TBL] [Abstract][Full Text] [Related]