These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 39198197)
21. The influence of α-1,4-glucan substrates on 4,6-α-d-glucanotransferase reaction dynamics during isomalto/malto-polysaccharide synthesis. Klostermann CE; van der Zaal PH; Schols HA; Buwalda PL; Bitter JH Int J Biol Macromol; 2021 Jun; 181():762-768. PubMed ID: 33798574 [TBL] [Abstract][Full Text] [Related]
22. Synthesis of New Hyperbranched α-Glucans from Sucrose by Lactobacillus reuteri 180 Glucansucrase Mutants. Meng X; Dobruchowska JM; Pijning T; Gerwig GJ; Dijkhuizen L J Agric Food Chem; 2016 Jan; 64(2):433-42. PubMed ID: 26688101 [TBL] [Abstract][Full Text] [Related]
23. Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Meng X; Gangoiti J; Bai Y; Pijning T; Van Leeuwen SS; Dijkhuizen L Cell Mol Life Sci; 2016 Jul; 73(14):2681-706. PubMed ID: 27155661 [TBL] [Abstract][Full Text] [Related]
24. Mining novel starch-converting Glycoside Hydrolase 70 enzymes from the Nestlé Culture Collection genome database: The Lactobacillus reuteri NCC 2613 GtfB. Gangoiti J; van Leeuwen SS; Meng X; Duboux S; Vafiadi C; Pijning T; Dijkhuizen L Sci Rep; 2017 Aug; 7(1):9947. PubMed ID: 28855510 [TBL] [Abstract][Full Text] [Related]
25. Crystal Structure of 4,6-α-Glucanotransferase Supports Diet-Driven Evolution of GH70 Enzymes from α-Amylases in Oral Bacteria. Bai Y; Gangoiti J; Dijkstra BW; Dijkhuizen L; Pijning T Structure; 2017 Feb; 25(2):231-242. PubMed ID: 28065507 [TBL] [Abstract][Full Text] [Related]
26. Lactobacillus reuteri Strains Convert Starch and Maltodextrins into Homoexopolysaccharides Using an Extracellular and Cell-Associated 4,6-α-Glucanotransferase. Bai Y; Böger M; van der Kaaij RM; Woortman AJ; Pijning T; van Leeuwen SS; van Bueren AL; Dijkhuizen L J Agric Food Chem; 2016 Apr; 64(14):2941-52. PubMed ID: 26996545 [TBL] [Abstract][Full Text] [Related]
27. Characterization of a 4,6‑α‑glucanotransferase from Lactobacillus reuteri E81 and production of malto-oligosaccharides with immune-modulatory roles. İspirli H; Şimşek Ö; Skory C; Sağdıç O; Dertli E Int J Biol Macromol; 2019 Mar; 124():1213-1219. PubMed ID: 30529203 [TBL] [Abstract][Full Text] [Related]
28. Structural determinants of alternating (α1 → 4) and (α1 → 6) linkage specificity in reuteransucrase of Lactobacillus reuteri. Meng X; Pijning T; Dobruchowska JM; Yin H; Gerwig GJ; Dijkhuizen L Sci Rep; 2016 Oct; 6():35261. PubMed ID: 27748434 [TBL] [Abstract][Full Text] [Related]
29. Structural and property characterization of low-molecular-weight novel reuterans synthesized from pea starch by Limosilactobacillus reuteri N1 GtfB with 4,6-α-glucanotransferase II activity. Dong J; Wang Y; Fan R; Zhang B; Li X; Jin Z; Bai Y Int J Biol Macromol; 2024 Nov; 281(Pt 3):136396. PubMed ID: 39383921 [TBL] [Abstract][Full Text] [Related]
30. Crystal structure of Thermotoga maritima 4-alpha-glucanotransferase and its acarbose complex: implications for substrate specificity and catalysis. Roujeinikova A; Raasch C; Sedelnikova S; Liebl W; Rice DW J Mol Biol; 2002 Aug; 321(1):149-62. PubMed ID: 12139940 [TBL] [Abstract][Full Text] [Related]
31. Characterization of the 4,6-α-glucanotransferase GTFB enzyme of Lactobacillus reuteri 121 isolated from inclusion bodies. Bai Y; van der Kaaij RM; Woortman AJ; Jin Z; Dijkhuizen L BMC Biotechnol; 2015 Jun; 15():49. PubMed ID: 26050651 [TBL] [Abstract][Full Text] [Related]
32. Multiple approaches of loop region modification for thermostability improvement of 4,6-α-glucanotransferase from Limosilactobacillus fermentum NCC 3057. Rao D; Huo R; Yan Z; Guo Z; Liu W; Lu M; Luo H; Tao X; Yang W; Su L; Chen S; Wang L; Wu J Int J Biol Macromol; 2023 Apr; 233():123536. PubMed ID: 36740130 [TBL] [Abstract][Full Text] [Related]
33. Insights into the catalytic properties of 4,3-α-glucanotransferase to guide the biofabrication of α-glucans with low digestibility. Yang Y; Sun Y; Zhang T; Hamaker BR; Miao M Food Funct; 2024 Aug; 15(16):8274-8285. PubMed ID: 39017685 [TBL] [Abstract][Full Text] [Related]
34. Essential dextrin structure as donor substrate for 4-α-glucanotransferase in glycogen debranching enzyme. Uno R; Makino Y; Matsubara H J Biochem; 2024 Jul; 176(2):109-117. PubMed ID: 38498909 [TBL] [Abstract][Full Text] [Related]
35. Structural characterization of linear isomalto-/malto-oligomer products synthesized by the novel GTFB 4,6-α-glucanotransferase enzyme from Lactobacillus reuteri 121. Dobruchowska JM; Gerwig GJ; Kralj S; Grijpstra P; Leemhuis H; Dijkhuizen L; Kamerling JP Glycobiology; 2012 Apr; 22(4):517-28. PubMed ID: 22138321 [TBL] [Abstract][Full Text] [Related]
36. Structural elucidation and functional characteristics of novel potential prebiotics produced from Limosilactobacillus reuteri N1 GtfB-treated maize starches. Dong J; Wang Y; Chen Y; Wang Q; Zhang B; Li X; Jin Z; Bai Y Carbohydr Polym; 2024 Sep; 340():122249. PubMed ID: 38858018 [TBL] [Abstract][Full Text] [Related]
37. Characterization of the Functional Roles of Amino Acid Residues in Acceptor-binding Subsite +1 in the Active Site of the Glucansucrase GTF180 from Lactobacillus reuteri 180. Meng X; Pijning T; Dobruchowska JM; Gerwig GJ; Dijkhuizen L J Biol Chem; 2015 Dec; 290(50):30131-41. PubMed ID: 26507662 [TBL] [Abstract][Full Text] [Related]
38. Acceptor specificity of 4-alpha-glucanotransferases of mammalian glycogen debranching enzymes. Makino Y; Omichi K J Biochem; 2006 Mar; 139(3):535-41. PubMed ID: 16567418 [TBL] [Abstract][Full Text] [Related]
39. Rational transformation of Lactobacillus reuteri 121 reuteransucrase into a dextransucrase. Kralj S; van Geel-Schutten IG; Faber EJ; van der Maarel MJ; Dijkhuizen L Biochemistry; 2005 Jun; 44(25):9206-16. PubMed ID: 15966745 [TBL] [Abstract][Full Text] [Related]
40. Identification of a novel starch-converting GtfB enzyme from the Fructilactobacillus sanfranciscensis TMW11304 to reduce the viscoelasticity and retrogradation of tapioca starch. Dong J; Bai Y; Chen Y; Li X; Wang Y; Fan R; Wang N; Jin Z Int J Biol Macromol; 2024 Apr; 263(Pt 2):130308. PubMed ID: 38401578 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]