These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 39198487)
1. Synchronous PIV measurements of a self-powered blood turbine and pump couple for right ventricle support. Ucak K; Karatas F; Cetinkaya E; Pekkan K Sci Rep; 2024 Aug; 14(1):19962. PubMed ID: 39198487 [TBL] [Abstract][Full Text] [Related]
2. In vitro validation of a self-driving aortic-turbine venous-assist device for Fontan patients. Pekkan K; Aka IB; Tutsak E; Ermek E; Balim H; Lazoglu I; Turkoz R J Thorac Cardiovasc Surg; 2018 Jul; 156(1):292-301.e7. PubMed ID: 29666009 [TBL] [Abstract][Full Text] [Related]
3. Effect of impeller rotational phase on the FDA blood pump velocity fields. Ucak K; Karatas F; Pekkan K Artif Organs; 2024 Oct; 48(10):1126-1137. PubMed ID: 38957988 [TBL] [Abstract][Full Text] [Related]
4. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV). Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585 [TBL] [Abstract][Full Text] [Related]
5. Numerical and experimental characterization of splitter blade impact on pump as turbine performance. Adu D; Du J; Darko RO; Ofosu Antwi E; Aamir Shafique Khan M Sci Prog; 2021; 104(2):36850421993247. PubMed ID: 33900840 [TBL] [Abstract][Full Text] [Related]
6. A prototype HeartQuest ventricular assist device for particle image velocimetry measurements. Day SW; McDaniel JC; Wood HG; Allaire PE; Song X; Lemire PP; Miles SD Artif Organs; 2002 Nov; 26(11):1002-5. PubMed ID: 12406161 [TBL] [Abstract][Full Text] [Related]
7. Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles. Song G; Chua LP; Lim TM Artif Organs; 2010 Feb; 34(2):98-104. PubMed ID: 19817732 [TBL] [Abstract][Full Text] [Related]
8. Computational Fluid Dynamics Model of Continuous-Flow Total Artificial Heart: Right Pump Impeller Design Changes to Improve Biocompatibility. Goodin MS; Horvath DJ; Kuban BD; Polakowski AR; Fukamachi K; Flick CR; Karimov JH ASAIO J; 2022 Jun; 68(6):829-838. PubMed ID: 34560715 [TBL] [Abstract][Full Text] [Related]
9. PIV measurements of flow in a centrifugal blood pump: steady flow. Day SW; McDaniel JC J Biomech Eng; 2005 Apr; 127(2):244-53. PubMed ID: 15971702 [TBL] [Abstract][Full Text] [Related]
10. Numerical analysis of the inner flow field of a biocentrifugal blood pump. Chua LP; Song G; Lim TM; Zhou T Artif Organs; 2006 Jun; 30(6):467-77. PubMed ID: 16734599 [TBL] [Abstract][Full Text] [Related]
11. Fluid-structure interaction analysis of a collapsible axial flow blood pump impeller and protective cage for Fontan patients. Hirschhorn M; Bisirri E; Stevens R; Throckmorton AL Artif Organs; 2020 Aug; 44(8):E337-E347. PubMed ID: 32216111 [TBL] [Abstract][Full Text] [Related]
12. Fluid force predictions and experimental measurements for a magnetically levitated pediatric ventricular assist device. Throckmorton AL; Untaroiu A; Lim DS; Wood HG; Allaire PE Artif Organs; 2007 May; 31(5):359-68. PubMed ID: 17470205 [TBL] [Abstract][Full Text] [Related]
13. Magnetically suspended centrifugal blood pump with a self bearing motor. Masuzawa T; Onuma H; Kim SJ; Okada Y ASAIO J; 2002; 48(4):437-42. PubMed ID: 12141477 [TBL] [Abstract][Full Text] [Related]
14. A computational study of the effects of inlet guide vanes on the performance of a centrifugal blood pump. Chan WK; Wong YW; Yu SC; Chua LP Artif Organs; 2002 Jun; 26(6):534-42. PubMed ID: 12072110 [TBL] [Abstract][Full Text] [Related]
15. Study of velocity and shear stress distributions in the impeller passages and the volute of a bio-centrifugal ventricular assist device. Chua LP; Ong KS; Song G Artif Organs; 2008 May; 32(5):376-87. PubMed ID: 18471167 [TBL] [Abstract][Full Text] [Related]
16. Channel impeller design for centrifugal blood pump in hybrid pediatric total artificial heart: Modeling, magnet integration, and hydraulic experiments. Hirschhorn M; Catucci N; Day SW; Stevens RM; Tchantchaleishvili V; Throckmorton AL Artif Organs; 2023 Apr; 47(4):680-694. PubMed ID: 36524792 [TBL] [Abstract][Full Text] [Related]
17. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry. Su B; Chua LP; Wang X Artif Organs; 2012 Apr; 36(4):359-67. PubMed ID: 22040356 [TBL] [Abstract][Full Text] [Related]
18. Development of Inspired Therapeutics Pediatric VAD: Benchtop Evaluation of Impeller Performance and Torques for MagLev Motor Design. Tompkins LH; Prina SR; Gellman BN; Morello GF; Roussel T; Kopechek JA; Williams SJ; Petit PC; Slaughter MS; Koenig SC; Dasse KA Cardiovasc Eng Technol; 2022 Apr; 13(2):307-317. PubMed ID: 34518953 [TBL] [Abstract][Full Text] [Related]
19. Development of the Centrifugal Blood Pump for a Hybrid Continuous Flow Pediatric Total Artificial Heart: Model, Make, Measure. Fox CS; Palazzolo T; Hirschhorn M; Stevens RM; Rossano J; Day SW; Tchantchaleishvili V; Throckmorton AL Front Cardiovasc Med; 2022; 9():886874. PubMed ID: 35990958 [TBL] [Abstract][Full Text] [Related]
20. Flow field study comparing design iterations of a 50 cc left ventricular assist device. Nanna JC; Wivholm JA; Deutsch S; Manning KB ASAIO J; 2011; 57(5):349-57. PubMed ID: 21734560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]