These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 39198740)

  • 1. Prediction of mutation-induced protein stability changes based on the geometric representations learned by a self-supervised method.
    Li SS; Liu ZM; Li J; Ma YB; Dong ZY; Hou JW; Shen FJ; Wang WB; Li QM; Su JG
    BMC Bioinformatics; 2024 Aug; 25(1):282. PubMed ID: 39198740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PMSPcnn: Predicting protein stability changes upon single point mutations with convolutional neural network.
    Sun X; Yang S; Wu Z; Su J; Hu F; Chang F; Li C
    Structure; 2024 Jun; 32(6):838-848.e3. PubMed ID: 38508191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the performance of computational predictors for estimating protein stability changes upon missense mutations.
    Iqbal S; Li F; Akutsu T; Ascher DB; Webb GI; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34058752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. INPS: predicting the impact of non-synonymous variations on protein stability from sequence.
    Fariselli P; Martelli PL; Savojardo C; Casadio R
    Bioinformatics; 2015 Sep; 31(17):2816-21. PubMed ID: 25957347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of impacts of mutations on protein structure and interactions: SDM, a statistical approach, and mCSM, using machine learning.
    Pandurangan AP; Blundell TL
    Protein Sci; 2020 Jan; 29(1):247-257. PubMed ID: 31693276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep geometric representations for modeling effects of mutations on protein-protein binding affinity.
    Liu X; Luo Y; Li P; Song S; Peng J
    PLoS Comput Biol; 2021 Aug; 17(8):e1009284. PubMed ID: 34347784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flattening the curve-How to get better results with small deep-mutational-scanning datasets.
    Wirnsberger G; Pritišanac I; Oberdorfer G; Gruber K
    Proteins; 2024 Jul; 92(7):886-902. PubMed ID: 38501649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing Supervised Learning and Rigorous Approach for Predicting Protein Stability upon Point Mutations in Difficult Targets.
    Kurniawan J; Ishida T
    J Chem Inf Model; 2023 Nov; 63(21):6778-6788. PubMed ID: 37897811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-Protein Interactions Prediction via Multimodal Deep Polynomial Network and Regularized Extreme Learning Machine.
    Lei H; Wen Y; You Z; Elazab A; Tan EL; Zhao Y; Lei B
    IEEE J Biomed Health Inform; 2019 May; 23(3):1290-1303. PubMed ID: 29994278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer learning to leverage larger datasets for improved prediction of protein stability changes.
    Dieckhaus H; Brocidiacono M; Randolph NZ; Kuhlman B
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2314853121. PubMed ID: 38285937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reviewing Challenges of Predicting Protein Melting Temperature Change Upon Mutation Through the Full Analysis of a Highly Detailed Dataset with High-Resolution Structures.
    Louis BBV; Abriata LA
    Mol Biotechnol; 2021 Oct; 63(10):863-884. PubMed ID: 34101125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ProS-GNN: Predicting effects of mutations on protein stability using graph neural networks.
    Wang S; Tang H; Shan P; Wu Z; Zuo L
    Comput Biol Chem; 2023 Dec; 107():107952. PubMed ID: 37643501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein multi-level structure feature-integrated deep learning method for mutational effect prediction.
    Pang AP; Luo Y; Zhou J; Cai X; Huang L; Zhang B; Liu ZQ; Zheng YG
    Biotechnol J; 2024 Aug; 19(8):e2400203. PubMed ID: 39115336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MSH-DTI: multi-graph convolution with self-supervised embedding and heterogeneous aggregation for drug-target interaction prediction.
    Zhang B; Niu D; Zhang L; Zhang Q; Li Z
    BMC Bioinformatics; 2024 Aug; 25(1):275. PubMed ID: 39179993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ELASPIC2 (EL2): Combining Contextualized Language Models and Graph Neural Networks to Predict Effects of Mutations.
    Strokach A; Lu TY; Kim PM
    J Mol Biol; 2021 May; 433(11):166810. PubMed ID: 33450251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurately Predicting Mutation-Caused Stability Changes from Protein Sequences Using Extreme Gradient Boosting.
    Lv X; Chen J; Lu Y; Chen Z; Xiao N; Yang Y
    J Chem Inf Model; 2020 Apr; 60(4):2388-2395. PubMed ID: 32203653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PremPS: Predicting the impact of missense mutations on protein stability.
    Chen Y; Lu H; Zhang N; Zhu Z; Wang S; Li M
    PLoS Comput Biol; 2020 Dec; 16(12):e1008543. PubMed ID: 33378330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph Neural Network with Self-Supervised Learning for Noncoding RNA-Drug Resistance Association Prediction.
    Zheng J; Qian Y; He J; Kang Z; Deng L
    J Chem Inf Model; 2022 Aug; 62(15):3676-3684. PubMed ID: 35838124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementary multi-modality molecular self-supervised learning via non-overlapping masking for property prediction.
    Shen A; Yuan M; Ma Y; Du J; Wang M
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38801702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.