These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 39198869)
1. Advancing the art of mosquito control: the journey of the sterile insect technique against Aedes aegypti in Cuba. Gato R; Menéndez Z; Rodríguez M; Gutiérrez-Bugallo G; Del Carmen Marquetti M Infect Dis Poverty; 2024 Aug; 13(1):61. PubMed ID: 39198869 [TBL] [Abstract][Full Text] [Related]
2. Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. Kittayapong P; Ninphanomchai S; Limohpasmanee W; Chansang C; Chansang U; Mongkalangoon P PLoS Negl Trop Dis; 2019 Oct; 13(10):e0007771. PubMed ID: 31658265 [TBL] [Abstract][Full Text] [Related]
3. Effectiveness of Wolbachia-mediated sterility coupled with sterile insect technique to suppress adult Aedes aegypti populations in Singapore: a synthetic control study. Bansal S; Lim JT; Chong CS; Dickens B; Ng Y; Deng L; Lee C; Tan LY; Kakani EG; Yoong Y; Du Yu D; Chain G; Ma P; Sim S; Ng LC; Tan CH Lancet Planet Health; 2024 Sep; 8(9):e617-e628. PubMed ID: 39243778 [TBL] [Abstract][Full Text] [Related]
4. Building capacity for testing sterile insect technique against Aedes-borne diseases in the Pacific: a training workshop and launch of sterile insect technique trials against Aedes aegypti and arboviral diseases. Foley N; Fouque F; Zhong Q; Bossin H; Bouyer J; Velayudhan R; Nett R; Drexler A Infect Dis Poverty; 2024 Oct; 13(1):75. PubMed ID: 39390619 [TBL] [Abstract][Full Text] [Related]
5. Novel Sterile Insect Technology Program Results in Suppression of a Field Mosquito Population and Subsequently to Reduced Incidence of Dengue. de Castro Poncio L; Dos Anjos FA; de Oliveira DA; Rebechi D; de Oliveira RN; Chitolina RF; Fermino ML; Bernardes LG; Guimarães D; Lemos PA; Silva MNE; Silvestre RGM; Bernardes ES; Paldi N J Infect Dis; 2021 Sep; 224(6):1005-1014. PubMed ID: 33507265 [TBL] [Abstract][Full Text] [Related]
6. Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niterói, Brazil: A quasi-experimental study. Pinto SB; Riback TIS; Sylvestre G; Costa G; Peixoto J; Dias FBS; Tanamas SK; Simmons CP; Dufault SM; Ryan PA; O'Neill SL; Muzzi FC; Kutcher S; Montgomery J; Green BR; Smithyman R; Eppinghaus A; Saraceni V; Durovni B; Anders KL; Moreira LA PLoS Negl Trop Dis; 2021 Jul; 15(7):e0009556. PubMed ID: 34252106 [TBL] [Abstract][Full Text] [Related]
7. Current status of the sterile insect technique for the suppression of mosquito populations on a global scale. Bouyer J Infect Dis Poverty; 2024 Sep; 13(1):68. PubMed ID: 39327622 [TBL] [Abstract][Full Text] [Related]
8. Efficacy of the In2Care® auto-dissemination device for reducing dengue transmission: study protocol for a parallel, two-armed cluster randomised trial in the Philippines. Salazar F; Angeles J; Sy AK; Inobaya MT; Aguila A; Toner T; Bangs MJ; Thomsen E; Paul RE Trials; 2019 May; 20(1):269. PubMed ID: 31088515 [TBL] [Abstract][Full Text] [Related]
9. Effectiveness of mass trapping interventions using autocidal gravid ovitraps (AGO) for the control of the dengue vector, Aedes (Stegomyia) aegypti, in Northern Mexico. Aguilar-Durán JA; Hamer GL; Reyes-Villanueva F; Fernández-Santos NA; Uriegas-Camargo S; Rodríguez-Martínez LM; Estrada-Franco JG; Rodríguez-Pérez MA Parasit Vectors; 2024 Aug; 17(1):344. PubMed ID: 39154005 [TBL] [Abstract][Full Text] [Related]
10. The mosquito electrocuting trap as an exposure-free method for measuring human-biting rates by Aedes mosquito vectors. Ortega-López LD; Pondeville E; Kohl A; León R; Betancourth MP; Almire F; Torres-Valencia S; Saldarriaga S; Mirzai N; Ferguson HM Parasit Vectors; 2020 Jan; 13(1):31. PubMed ID: 31941536 [TBL] [Abstract][Full Text] [Related]
11. Ingested insecticide to control Aedes aegypti: developing a novel dried attractive toxic sugar bait device for intra-domiciliary control. Sippy R; Rivera GE; Sanchez V; Heras F; Morejón B; Beltrán E; Hikida RS; López-Latorre MA; Aguirre A; Stewart-Ibarra AM; Larsen DA; Neira M Parasit Vectors; 2020 Feb; 13(1):78. PubMed ID: 32066486 [TBL] [Abstract][Full Text] [Related]
12. Pilot trial using mass field-releases of sterile males produced with the incompatible and sterile insect techniques as part of integrated Aedes aegypti control in Mexico. Martín-Park A; Che-Mendoza A; Contreras-Perera Y; Pérez-Carrillo S; Puerta-Guardo H; Villegas-Chim J; Guillermo-May G; Medina-Barreiro A; Delfín-González H; Méndez-Vales R; Vázquez-Narvaez S; Palacio-Vargas J; Correa-Morales F; Ayora-Talavera G; Pavía-Ruz N; Liang X; Fu P; Zhang D; Wang X; Toledo-Romaní ME; Xi Z; Vázquez-Prokopec G; Manrique-Saide P PLoS Negl Trop Dis; 2022 Apr; 16(4):e0010324. PubMed ID: 35471983 [TBL] [Abstract][Full Text] [Related]
13. Integrated control of Aedes albopictus in Southwest Germany supported by the Sterile Insect Technique. Becker N; Langentepe-Kong SM; Tokatlian Rodriguez A; Oo TT; Reichle D; Lühken R; Schmidt-Chanasit J; Lüthy P; Puggioli A; Bellini R Parasit Vectors; 2022 Jan; 15(1):9. PubMed ID: 34983608 [TBL] [Abstract][Full Text] [Related]
14. EVITA Dengue: a cluster-randomized controlled trial to EValuate the efficacy of Wolbachia-InfecTed Aedes aegypti mosquitoes in reducing the incidence of Arboviral infection in Brazil. Collins MH; Potter GE; Hitchings MDT; Butler E; Wiles M; Kennedy JK; Pinto SB; Teixeira ABM; Casanovas-Massana A; Rouphael NG; Deye GA; Simmons CP; Moreira LA; Nogueira ML; Cummings DAT; Ko AI; Teixeira MM; Edupuganti S Trials; 2022 Mar; 23(1):185. PubMed ID: 35236394 [TBL] [Abstract][Full Text] [Related]
15. Development of the Sterile Insect Technique to control the dengue vector Aedes aegypti (Linnaeus) in Sri Lanka. Ranathunge T; Harishchandra J; Maiga H; Bouyer J; Gunawardena YINS; Hapugoda M PLoS One; 2022; 17(4):e0265244. PubMed ID: 35377897 [TBL] [Abstract][Full Text] [Related]
16. Assessing the efficacy of male Wolbachia-infected mosquito deployments to reduce dengue incidence in Singapore: study protocol for a cluster-randomized controlled trial. Ong J; Ho SH; Soh SXH; Wong Y; Ng Y; Vasquez K; Lai YL; Setoh YX; Chong CS; Lee V; Wong JCC; Tan CH; Sim S; Ng LC; Lim JT Trials; 2022 Dec; 23(1):1023. PubMed ID: 36528590 [TBL] [Abstract][Full Text] [Related]
17. Vector competence of Aedes aegypti from Havana, Cuba, for dengue virus type 1, chikungunya, and Zika viruses. Gutiérrez-Bugallo G; Boullis A; Martinez Y; Hery L; Rodríguez M; Bisset JA; Vega-Rúa A PLoS Negl Trop Dis; 2020 Dec; 14(12):e0008941. PubMed ID: 33270652 [TBL] [Abstract][Full Text] [Related]
18. Combined sterile insect technique and incompatible insect technique: sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Kittayapong P; Kaeothaisong NO; Ninphanomchai S; Limohpasmanee W Parasit Vectors; 2018 Dec; 11(Suppl 2):657. PubMed ID: 30583749 [TBL] [Abstract][Full Text] [Related]
19. The AWED trial (Applying Wolbachia to Eliminate Dengue) to assess the efficacy of Wolbachia-infected mosquito deployments to reduce dengue incidence in Yogyakarta, Indonesia: study protocol for a cluster randomised controlled trial. Anders KL; Indriani C; Ahmad RA; Tantowijoyo W; Arguni E; Andari B; Jewell NP; Rances E; O'Neill SL; Simmons CP; Utarini A Trials; 2018 May; 19(1):302. PubMed ID: 29855331 [TBL] [Abstract][Full Text] [Related]