These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 39199422)

  • 1. Enhancing Vaccine Efficacy and Stability: A Review of the Utilization of Nanoparticles in mRNA Vaccines.
    Parvin N; Joo SW; Mandal TK
    Biomolecules; 2024 Aug; 14(8):. PubMed ID: 39199422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced nanoscale delivery systems for mRNA-based vaccines.
    Mobasher M; Ansari R; Castejon AM; Barar J; Omidi Y
    Biochim Biophys Acta Gen Subj; 2024 Mar; 1868(3):130558. PubMed ID: 38185238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term stability and immunogenicity of lipid nanoparticle COVID-19 mRNA vaccine is affected by particle size.
    Shi R; Liu X; Wang Y; Pan M; Wang S; Shi L; Ni B
    Hum Vaccin Immunother; 2024 Dec; 20(1):2342592. PubMed ID: 38714327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Overview of Nanoparticle-Based Delivery Platforms for mRNA Vaccines for Treating Cancer.
    Lin Y; Chen X; Wang K; Liang L; Zhang H
    Vaccines (Basel); 2024 Jun; 12(7):. PubMed ID: 39066365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidation of lipid nanoparticle surface structure in mRNA vaccines.
    Wang MM; Wappelhorst CN; Jensen EL; Chi YT; Rouse JC; Zou Q
    Sci Rep; 2023 Oct; 13(1):16744. PubMed ID: 37798336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Lipid Nanoparticles Stable and Efficient for mRNA Transfection to Antigen-Presenting Cells.
    Choi KC; Lee DH; Lee JW; Lee JS; Lee YK; Choi MJ; Jeong HY; Kim MW; Lee CG; Park YS
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospects and Challenges in Developing mRNA Vaccines for Infectious Diseases and Oncogenic Viruses.
    Kutikuppala LVS; Kourampi I; Kanagala RSD; Bhattacharjee P; Boppana SH
    Med Sci (Basel); 2024 May; 12(2):. PubMed ID: 38804384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-Responsive β-Glucans-Complexed mRNA in LNPs as an Oral Vaccine for Enhancing Cancer Immunotherapy.
    Luo PK; Ho HM; Chiang MC; Chu LA; Chuang YH; Lyu PC; Hu IC; Chang WA; Peng SY; Jayakumar J; Chen HL; Huang MH; Sung HW
    Adv Mater; 2024 Aug; 36(33):e2404830. PubMed ID: 38895941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principles for designing an optimal mRNA lipid nanoparticle vaccine.
    Kon E; Elia U; Peer D
    Curr Opin Biotechnol; 2022 Feb; 73():329-336. PubMed ID: 34715546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Mannosylated Lipid Nanoparticles for mRNA Cancer Vaccine with High Antigen Presentation Efficiency and Immunomodulatory Capability.
    Lei J; Qi S; Yu X; Gao X; Yang K; Zhang X; Cheng M; Bai B; Feng Y; Lu M; Wang Y; Li H; Yu G
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202318515. PubMed ID: 38320193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable Lipid-Modified Poly(Guanidine Thioctic Acid)s: A Fortifier of Lipid Nanoparticles to Promote the Efficacy and Safety of mRNA Cancer Vaccines.
    Yang K; Bai B; Lei J; Yu X; Qi S; Wang Y; Huang F; Tong Z; Yu G
    J Am Chem Soc; 2024 May; 146(17):11679-11693. PubMed ID: 38482849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mRNA vaccines and their delivery strategies: A journey from infectious diseases to cancer.
    Malla R; Srilatha M; Farran B; Nagaraju GP
    Mol Ther; 2024 Jan; 32(1):13-31. PubMed ID: 37919901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications.
    Wang C; Zhang Y; Dong Y
    Acc Chem Res; 2021 Dec; 54(23):4283-4293. PubMed ID: 34793124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in mRNA vaccines.
    Li M; Wang Z; Xie C; Xia X
    Int Rev Cell Mol Biol; 2022; 372():295-316. PubMed ID: 36064266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Taylor Dispersion Analysis to support lipid-nanoparticle formulations for mRNA vaccines.
    Malburet C; Leclercq L; Cotte JF; Thiebaud J; Bazin E; Garinot M; Cottet H
    Gene Ther; 2023 May; 30(5):421-428. PubMed ID: 36316446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing vaccine development: Evaluation of a mannose-modified lipid nanoparticle-based candidate for African swine fever p30 mRNA vaccine eliciting robust immune response in mice.
    Gong L; Zhang Y; Wang L; Zhao X; Wang L; Qiu X; Yang X; Zhu W; Lv L; Kang Y; Wu Y; Zhang A; Du Y; Wang X; Zhang G; Sun A; Zhuang G
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132432. PubMed ID: 38761609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemistry of Lipid Nanoparticles for RNA Delivery.
    Eygeris Y; Gupta M; Kim J; Sahay G
    Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research Advances on the Stability of mRNA Vaccines.
    Cheng F; Wang Y; Bai Y; Liang Z; Mao Q; Liu D; Wu X; Xu M
    Viruses; 2023 Mar; 15(3):. PubMed ID: 36992377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SMART-lipid nanoparticles enabled mRNA vaccine elicits cross-reactive humoral responses against the omicron sub-variants.
    Mahalingam G; Rachamalla HK; Arjunan P; Karuppusamy KV; Periyasami Y; Mohan A; Subramaniyam K; M S; Rajendran V; Moorthy M; Varghese GM; Mohankumar KM; Thangavel S; Srivastava A; Marepally S
    Mol Ther; 2024 May; 32(5):1284-1297. PubMed ID: 38414245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency.
    Anderluzzi G; Lou G; Woods S; Schmidt ST; Gallorini S; Brazzoli M; Johnson R; Roberts CW; O'Hagan DT; Baudner BC; Perrie Y
    J Control Release; 2022 Feb; 342():388-399. PubMed ID: 34896446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.