These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 39199537)

  • 1. Evaluation of Different Visual Feedback Methods for Brain-Computer Interfaces (BCI) Based on Code-Modulated Visual Evoked Potentials (cVEP).
    Fodor MA; Herschel H; Cantürk A; Heisenberg G; Volosyak I
    Brain Sci; 2024 Aug; 14(8):. PubMed ID: 39199537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces.
    Volosyak I; Rezeika A; Benda M; Gembler F; Stawicki P
    Biomed Phys Eng Express; 2020 May; 6(3):035034. PubMed ID: 33438679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From full calibration to zero training for a code-modulated visual evoked potentials for brain-computer interface.
    Thielen J; Marsman P; Farquhar J; Desain P
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33690182
    [No Abstract]   [Full Text] [Related]  

  • 4. A visual brain-computer interface as communication aid for patients with amyotrophic lateral sclerosis.
    Verbaarschot C; Tump D; Lutu A; Borhanazad M; Thielen J; van den Broek P; Farquhar J; Weikamp J; Raaphorst J; Groothuis JT; Desain P
    Clin Neurophysiol; 2021 Oct; 132(10):2404-2415. PubMed ID: 34454267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of spatial frequency in visual stimuli for cVEP-based BCIs: evaluation of performance and user experience.
    Fernández-Rodríguez Á; Martínez-Cagigal V; Santamaría-Vázquez E; Ron-Angevin R; Hornero R
    Front Hum Neurosci; 2023; 17():1288438. PubMed ID: 38021231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New approach for designing cVEP BCI stimuli based on superposition of edge responses.
    Yasinzai MN; Ider YZ
    Biomed Phys Eng Express; 2020 Jun; 6(4):045018. PubMed ID: 33444278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VEP-based brain-computer interfaces modulated by Golay complementary series for improving performance.
    Wei Q; Huang Y; Li M; Lu Z
    Technol Health Care; 2016 Apr; 24 Suppl 2():S541-9. PubMed ID: 27163316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. cVEP Training Data Validation-Towards Optimal Training Set Composition from Multi-Day Data.
    Stawicki P; Volosyak I
    Brain Sci; 2022 Feb; 12(2):. PubMed ID: 35203998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What External Variables Affect Sensorimotor Rhythm Brain-Computer Interface (SMR-BCI) Performance?
    Horowitz AJ; Guger C; Korostenskaja M
    HCA Healthc J Med; 2021; 2(3):143-162. PubMed ID: 37427002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
    Mannan MMN; Kamran MA; Kang S; Choi HS; Jeong MY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using a cVEP-Based Brain-Computer Interface to Control a Virtual Agent.
    Riechmann H; Finke A; Ritter H
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jun; 24(6):692-9. PubMed ID: 26469340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential.
    Brumberg JS; Nguyen A; Pitt KM; Lorenz SD
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):241-249. PubMed ID: 29385839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single stimulus location for two inputs: A combined brain-computer interface based on Steady-State Visual Evoked Potential (SSVEP).
    Wang L; Zhang Z; Han D; Zhang Z; Liu Z; Liu W
    Eur J Neurosci; 2021 Feb; 53(3):861-875. PubMed ID: 33128787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability-based automatic repeat request for short code modulation visual evoked potentials in brain computer interfaces.
    Sato J; Washizawa Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():562-5. PubMed ID: 26736324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.
    Spuler M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1087-90. PubMed ID: 26736454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 120-target brain-computer interface based on code-modulated visual evoked potentials.
    Sun Q; Zheng L; Pei W; Gao X; Wang Y
    J Neurosci Methods; 2022 Jun; 375():109597. PubMed ID: 35427686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic detection of code-modulated visual evoked potentials using novel covariance estimators and short-time EEG signals.
    Zarei A; Mohammadzadeh Asl B
    Comput Biol Med; 2022 Aug; 147():105771. PubMed ID: 35792474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Modified Hybrid Brain-Computer Interface Speller Based on Steady-State Visual Evoked Potentials and Electromyogram.
    Sadeghi S; Maleki A
    J Integr Neurosci; 2024 Apr; 23(4):73. PubMed ID: 38682224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.
    Spüler M; Rosenstiel W; Bogdan M
    PLoS One; 2012; 7(12):e51077. PubMed ID: 23236433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-computer interfaces based on code-modulated visual evoked potentials (c-VEP): a literature review.
    Martínez-Cagigal V; Thielen J; Santamaría-Vázquez E; Pérez-Velasco S; Desain P; Hornero R
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34763331
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.