These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 3920078)
21. Limited nonenzymatic glucosylation of low-density lipoprotein does not alter its catabolism in tissue culture. Schleicher E; Olgemöller B; Schön J; Dürst T; Wieland OH Biochim Biophys Acta; 1985 Aug; 846(2):226-33. PubMed ID: 3927987 [TBL] [Abstract][Full Text] [Related]
22. Analysis of low-density lipoprotein catabolism by primary cultures of hepatic cells from normal and low-density lipoprotein receptor knockout mice. Truong TQ; Auger A; Denizeau F; Brissette L Biochim Biophys Acta; 2000 Apr; 1484(2-3):307-15. PubMed ID: 10760479 [TBL] [Abstract][Full Text] [Related]
23. Induction of low density lipoprotein receptor synthesis by high density lipoprotein in cultures of human skin fibroblasts. Miller NE Biochim Biophys Acta; 1978 Apr; 529(1):131-7. PubMed ID: 205257 [TBL] [Abstract][Full Text] [Related]
24. Low-density lipoproteins modified by lipid transfer protein have altered biological activity. Chait A; Eisenberg S; Steinmetz A; Albers JJ; Bierman EL Biochim Biophys Acta; 1984 Sep; 795(2):314-25. PubMed ID: 6477948 [TBL] [Abstract][Full Text] [Related]
25. Binding, degradation, and utilization of plasma high density and low density lipoproteins for progesterone production in cultured rat luteal cells. Rajendran KG; Hwang J; Menon KM Endocrinology; 1983 May; 112(5):1746-53. PubMed ID: 6299707 [TBL] [Abstract][Full Text] [Related]
26. Different effects of reductive and nonreductive glucosylation on LDL-catabolism. Olgemöller B; Schleicher E; Wieland OH Horm Metab Res Suppl; 1985; 15():87-90. PubMed ID: 3865887 [TBL] [Abstract][Full Text] [Related]
27. Regulation of low density lipoprotein receptor activity in primary cultures of human hepatocytes by serum lipoproteins. Havekes LM; Verboom H; de Wit E; Yap SH; Princen HM Hepatology; 1986; 6(6):1356-60. PubMed ID: 3793011 [TBL] [Abstract][Full Text] [Related]
28. Roles of apolipoproteins B and E in the cellular binding of very low density lipoproteins. Krul ES; Tikkanen MJ; Cole TG; Davie JM; Schonfeld G J Clin Invest; 1985 Feb; 75(2):361-9. PubMed ID: 3973009 [TBL] [Abstract][Full Text] [Related]
29. Degradation of rat and human lipoproteins by cultured rat ovary granulosa cells. Schreiber JR; Nakamura K; Weinstein DB Endocrinology; 1982 Jan; 110(1):55-63. PubMed ID: 7053994 [TBL] [Abstract][Full Text] [Related]
30. Cyclosporine inhibits catabolism of low-density lipoproteins in HepG2 cells by about 25%. Rayyes OA; Wallmark A; Florén CH Hepatology; 1996 Sep; 24(3):613-9. PubMed ID: 8781333 [TBL] [Abstract][Full Text] [Related]
31. Uptake of cholesterol-rich remnant lipoproteins by human monocyte-derived macrophages is mediated by low density lipoprotein receptors. Koo C; Wernette-Hammond ME; Garcia Z; Malloy MJ; Uauy R; East C; Bilheimer DW; Mahley RW; Innerarity TL J Clin Invest; 1988 May; 81(5):1332-40. PubMed ID: 3163347 [TBL] [Abstract][Full Text] [Related]
32. Carboxymethylated beta-1,3-glucan inhibits the binding and degradation of acetylated low density lipoproteins in macrophages in vitro and modulates their plasma clearance in vivo. Dushkin MI; Safina AF; Vereschagin EI; Schwartz YSh Cell Biochem Funct; 1996 Sep; 14(3):209-17. PubMed ID: 8888575 [TBL] [Abstract][Full Text] [Related]
33. Uptake and degradation of human low-density lipoprotein by human liver parenchymal and Kupffer cells in culture. Kamps JA; Kruijt JK; Kuiper J; Van Berkel TJ Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):135-40. PubMed ID: 1903931 [TBL] [Abstract][Full Text] [Related]
34. Degradation by cultured fibroblasts and macrophages of unmodified and 1,2-cyclohexanedione-modified low-density lipoprotein from normal and homozygous familial hypercholesterolaemic subjects. Knight BL; Soutar AK Biochem J; 1982 Jan; 202(1):145-52. PubMed ID: 6282270 [TBL] [Abstract][Full Text] [Related]
35. Regulation of hepatic receptor-dependent degradation of LDL by mevinolin in rabbits with hypercholesterolemia induced by a wheat starch-casein diet. Chao YS; Kroon PA; Yamin TT; Thompson GM; Alberts AW Biochim Biophys Acta; 1983 Nov; 754(2):134-41. PubMed ID: 6317039 [TBL] [Abstract][Full Text] [Related]
36. Complete down-regulation of low-density lipoprotein receptor activity in human liver parenchymal cells by beta-very-low-density lipoprotein. Kamps JA; Kuiper J; Kruijt JK; van Berkel TJ FEBS Lett; 1991 Aug; 287(1-2):34-8. PubMed ID: 1879534 [TBL] [Abstract][Full Text] [Related]
37. Quantitative role of parenchymal and non-parenchymal liver cells in the uptake of [14C]sucrose-labelled low-density lipoprotein in vivo. Harkes L; Van Berkel JC Biochem J; 1984 Nov; 224(1):21-7. PubMed ID: 6508758 [TBL] [Abstract][Full Text] [Related]
38. Glycosylation of LDL decreases its ability to interact with high-affinity receptors of human fibroblasts in vitro and decreases its clearance from rabbit plasma in vivo. Sasaki J; Cottam GL Biochim Biophys Acta; 1982 Nov; 713(2):199-207. PubMed ID: 6295495 [TBL] [Abstract][Full Text] [Related]
39. Cellular metabolism of human plasma intermediate-density lipoprotein (IDL). Friedman G; Gavish D; Vogel T; Eisenberg S Biochim Biophys Acta; 1990 May; 1044(1):118-26. PubMed ID: 2340301 [TBL] [Abstract][Full Text] [Related]
40. Characteristics of low and high density lipoprotein binding and lipoprotein-induced signaling in quiescent human vascular smooth muscle cells. Bochkov VN; Tkachuk VA; Kuzmenko YS; Borisova YL; Bühler FR; Resink TJ Mol Pharmacol; 1994 Feb; 45(2):262-70. PubMed ID: 8114675 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]