These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 39201537)

  • 1. Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides.
    Medina-Ortiz D; Contreras S; Fernández D; Soto-García N; Moya I; Cabas-Mora G; Olivera-Nappa Á
    Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Accelerates De Novo Design of Antimicrobial Peptides.
    Yin K; Xu W; Ren S; Xu Q; Zhang S; Zhang R; Jiang M; Zhang Y; Xu D; Li R
    Interdiscip Sci; 2024 Jun; 16(2):392-403. PubMed ID: 38416364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AniAMPpred: artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom.
    Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34259329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Prediction of Antimicrobial Peptides.
    Wang G; Vaisman II; van Hoek ML
    Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides.
    Boone K; Wisdom C; Camarda K; Spencer P; Tamerler C
    BMC Bioinformatics; 2021 May; 22(1):239. PubMed ID: 33975547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De Novo Antimicrobial Peptide Design with Feedback Generative Adversarial Networks.
    Zervou MA; Doutsi E; Pantazis Y; Tsakalides P
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on antimicrobial peptides databases and the computational tools.
    Ramazi S; Mohammadi N; Allahverdi A; Khalili E; Abdolmaleki P
    Database (Oxford); 2022 Mar; 2022():. PubMed ID: 35305010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning-Driven Discovery and Evaluation of Antimicrobial Peptides from
    Song J; Liu K; Jin X; Huang K; Fu S; Yi W; Cai Y; Yu Z; Mao F; Zhang Y
    Mar Drugs; 2024 Aug; 22(9):. PubMed ID: 39330266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping membrane activity in undiscovered peptide sequence space using machine learning.
    Lee EY; Fulan BM; Wong GC; Ferguson AL
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13588-13593. PubMed ID: 27849600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities.
    Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The antimicrobial peptide database is 20 years old: Recent developments and future directions.
    Wang G
    Protein Sci; 2023 Oct; 32(10):e4778. PubMed ID: 37695921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PTPAMP: prediction tool for plant-derived antimicrobial peptides.
    Jaiswal M; Singh A; Kumar S
    Amino Acids; 2023 Jan; 55(1):1-17. PubMed ID: 35864258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types.
    Xiao X; Shao YT; Cheng X; Stamatovic B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34086856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides.
    Lefin N; Herrera-Belén L; Farias JG; Beltrán JF
    Mol Divers; 2024 Aug; 28(4):2365-2374. PubMed ID: 37626205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing antimicrobial peptides using deep learning and molecular dynamic simulations.
    Cao Q; Ge C; Wang X; Harvey PJ; Zhang Z; Ma Y; Wang X; Jia X; Mobli M; Craik DJ; Jiang T; Yang J; Wei Z; Wang Y; Chang S; Yu R
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36857616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel antibacterial peptide recognition algorithm based on BERT.
    Zhang Y; Lin J; Zhao L; Zeng X; Liu X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34037687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Antimicrobial Peptides by Using Increment of Diversity with Quadratic Discriminant Analysis Method.
    Feng P; Wang Z; Yu X
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1309-1312. PubMed ID: 28212093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide-based drug discovery through artificial intelligence: towards an autonomous design of therapeutic peptides.
    Goles M; Daza A; Cabas-Mora G; Sarmiento-Varón L; Sepúlveda-Yañez J; Anvari-Kazemabad H; Davari MD; Uribe-Paredes R; Olivera-Nappa Á; Navarrete MA; Medina-Ortiz D
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38856172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences.
    Huang J; Xu Y; Xue Y; Huang Y; Li X; Chen X; Xu Y; Zhang D; Zhang P; Zhao J; Ji J
    Nat Biomed Eng; 2023 Jun; 7(6):797-810. PubMed ID: 36635418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.