These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 39201537)

  • 21. Deep mutational scanning and machine learning for the analysis of antimicrobial-peptide features driving membrane selectivity.
    Randall JR; Vieira LC; Wilke CO; Davies BW
    Nat Biomed Eng; 2024 Jul; 8(7):842-853. PubMed ID: 39085646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Collection of antimicrobial peptides database and its derivatives: Applications and beyond.
    Waghu FH; Idicula-Thomas S
    Protein Sci; 2020 Jan; 29(1):36-42. PubMed ID: 31441165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving Recognition of Antimicrobial Peptides and Target Selectivity through Machine Learning and Genetic Programming.
    Veltri D; Kamath U; Shehu A
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):300-313. PubMed ID: 28368808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An efficient hybrid deep learning architecture for predicting short antimicrobial peptides.
    Nguyen QH; Nguyen-Vo TH; Do TTT; Nguyen BP
    Proteomics; 2024 Jul; 24(14):e2300382. PubMed ID: 38837544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning-enabled discovery and design of membrane-active peptides.
    Lee EY; Wong GCL; Ferguson AL
    Bioorg Med Chem; 2018 Jun; 26(10):2708-2718. PubMed ID: 28728899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An advanced approach to identify antimicrobial peptides and their function types for penaeus through machine learning strategies.
    Lin Y; Cai Y; Liu J; Lin C; Liu X
    BMC Bioinformatics; 2019 Jun; 20(Suppl 8):291. PubMed ID: 31182007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discovery of novel antimicrobial peptides: A transcriptomic study of the sea anemone Cnidopus japonicus.
    Grafskaia EN; Polina NF; Babenko VV; Kharlampieva DD; Bobrovsky PA; Manuvera VA; Farafonova TE; Anikanov NA; Lazarev VN
    J Bioinform Comput Biol; 2018 Apr; 16(2):1840006. PubMed ID: 29361893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine learning assisted design of highly active peptides for drug discovery.
    Giguère S; Laviolette F; Marchand M; Tremblay D; Moineau S; Liang X; Biron É; Corbeil J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004074. PubMed ID: 25849257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model.
    Lee H; Lee S; Lee I; Nam H
    Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs.
    Lertampaiporn S; Vorapreeda T; Hongsthong A; Thammarongtham C
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33494403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery of antimicrobial peptides in the global microbiome with machine learning.
    Santos-Júnior CD; Torres MDT; Duan Y; Rodríguez Del Río Á; Schmidt TSB; Chong H; Fullam A; Kuhn M; Zhu C; Houseman A; Somborski J; Vines A; Zhao XM; Bork P; Huerta-Cepas J; de la Fuente-Nunez C; Coelho LP
    Cell; 2024 Jul; 187(14):3761-3778.e16. PubMed ID: 38843834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of deep learning models with simple method to assess the problem of antimicrobial peptides prediction.
    Lobanov MY; Slizen MV; Dovidchenko NV; Panfilov AV; Surin AA; Likhachev IV; Galzitskaya OV
    Mol Inform; 2024 May; 43(5):e202200181. PubMed ID: 36961202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains.
    Fields FR; Freed SD; Carothers KE; Hamid MN; Hammers DE; Ross JN; Kalwajtys VR; Gonzalez AJ; Hildreth AD; Friedberg I; Lee SW
    Drug Dev Res; 2020 Feb; 81(1):43-51. PubMed ID: 31483516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and Characterization of CC-AMP1-like and CC-AMP2-like Peptides in
    Culver KD; Sadecki PW; Jackson JK; Brown ZA; Hnilica ME; Wu J; Shaw LN; Wommack AJ; Hicks LM
    J Proteome Res; 2024 Aug; 23(8):2948-2960. PubMed ID: 38367000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent Progress in Machine Learning-based Prediction of Peptide Activity for Drug Discovery.
    Wu Q; Ke H; Li D; Wang Q; Fang J; Zhou J
    Curr Top Med Chem; 2019; 19(1):4-16. PubMed ID: 30674262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacteria-Specific Feature Selection for Enhanced Antimicrobial Peptide Activity Predictions Using Machine-Learning Methods.
    Teimouri H; Medvedeva A; Kolomeisky AB
    J Chem Inf Model; 2023 Mar; 63(6):1723-1733. PubMed ID: 36912047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antimicrobial Peptides towards Clinical Application-A Long History to Be Concluded.
    Cresti L; Cappello G; Pini A
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38732089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AMPFinder: A computational model to identify antimicrobial peptides and their functions based on sequence-derived information.
    Yang S; Yang Z; Ni X
    Anal Biochem; 2023 Jul; 673():115196. PubMed ID: 37236434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in Antimicrobial Peptide Discovery via Machine Learning and Delivery via Nanotechnology.
    Sowers A; Wang G; Xing M; Li B
    Microorganisms; 2023 Apr; 11(5):. PubMed ID: 37317103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artificial intelligence-driven antimicrobial peptide discovery.
    Szymczak P; Szczurek E
    Curr Opin Struct Biol; 2023 Dec; 83():102733. PubMed ID: 37992451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.