BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 3920204)

  • 1. Intracellular phosphorylation of glucose analogs via the phosphoenolpyruvate: mannose-phosphotransferase system in Streptococcus lactis.
    Thompson J; Chassy BM
    J Bacteriol; 1985 Apr; 162(1):224-34. PubMed ID: 3920204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities.
    Thompson J; Chassy BM; Egan W
    J Bacteriol; 1985 Apr; 162(1):217-23. PubMed ID: 3920203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr.
    Ye JJ; Reizer J; Cui X; Saier MH
    J Biol Chem; 1994 Apr; 269(16):11837-44. PubMed ID: 8163482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of methyl-beta-d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms.
    Thompson J; Saier MH
    J Bacteriol; 1981 Jun; 146(3):885-94. PubMed ID: 6787017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct galactose phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus lactis.
    Park YH; McKay LL
    J Bacteriol; 1982 Feb; 149(2):420-5. PubMed ID: 6799488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo.
    Thompson J
    J Bacteriol; 1979 Dec; 140(3):774-85. PubMed ID: 118155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Phosphoenolpyruvate:carbohydrate phosphotransferase systems in Enterococcus faecalis].
    Muraoka A; Ito K; Nagasaki H; Tanaka S
    Nihon Saikingaku Zasshi; 1991 Mar; 46(2):515-22. PubMed ID: 1905762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of glycolysis and sugar phosphotransferase activities in Streptococcus lactis: growth in the presence of 2-deoxy-D-glucose.
    Thompson J; Chassy BM
    J Bacteriol; 1983 May; 154(2):819-30. PubMed ID: 6404888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei.
    Chassy BM; Thompson J
    J Bacteriol; 1983 Jun; 154(3):1195-203. PubMed ID: 6406426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-deoxy-D-glucose uncouples energy production from growth.
    Thompson J; Chassy BM
    J Bacteriol; 1982 Sep; 151(3):1454-65. PubMed ID: 6286601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic consequences resulting from a methionine-to-valine substitution at position 48 in the HPr protein of Streptococcus salivarius.
    Plamondon P; Brochu D; Thomas S; Fradette J; Gauthier L; Vaillancourt K; Buckley N; Frenette M; Vadeboncoeur C
    J Bacteriol; 1999 Nov; 181(22):6914-21. PubMed ID: 10559156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of glucose and mannose by a common phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus mutans GS5.
    Liberman ES; Bleiweis AS
    Infect Immun; 1984 Mar; 43(3):1106-9. PubMed ID: 6698606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbohydrate metabolism in lactic streptococci: fate of galactose supplied in free or disaccharide form.
    Lee R; Molskness T; Sandine WE; Elliker PR
    Appl Microbiol; 1973 Dec; 26(6):951-8. PubMed ID: 4203337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of 2-deoxyglucose phosphate accumulation in Lactococcus lactis vesicles by metabolite-activated, ATP-dependent phosphorylation of serine-46 in HPr of the phosphotransferase system.
    Ye JJ; Reizer J; Saier MH
    Microbiology (Reading); 1994 Dec; 140 ( Pt 12)():3421-9. PubMed ID: 7881559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and metabolism of sucrose by Streptococcus lactis.
    Thompson J; Chassy BM
    J Bacteriol; 1981 Aug; 147(2):543-51. PubMed ID: 6267012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the individual glucose uptake systems of Lactococcus lactis: mannose-PTS, cellobiose-PTS and the novel GlcU permease.
    Castro R; Neves AR; Fonseca LL; Pool WA; Kok J; Kuipers OP; Santos H
    Mol Microbiol; 2009 Feb; 71(3):795-806. PubMed ID: 19054326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the glucose:H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis.
    Ye JJ; Neal JW; Cui X; Reizer J; Saier MH
    J Bacteriol; 1994 Jun; 176(12):3484-92. PubMed ID: 8206825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of a Streptococcus lactis strain that ferments lactose slowly.
    Crow VL; Thomas TD
    J Bacteriol; 1984 Jan; 157(1):28-34. PubMed ID: 6418719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis.
    Thompson J; Turner KW; Thomas TD
    J Bacteriol; 1978 Mar; 133(3):1163-74. PubMed ID: 417061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.