These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 3920206)

  • 1. Possible involvement of lipoic acid in binding protein-dependent transport systems in Escherichia coli.
    Richarme G
    J Bacteriol; 1985 Apr; 162(1):286-93. PubMed ID: 3920206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel aspect of the inhibition by arsenicals of binding-protein-dependent galactose transport in gram-negative bacteria.
    Richarme G
    Biochem J; 1988 Jul; 253(2):371-6. PubMed ID: 3052423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Galactose- and maltose-stimulated lipoamide dehydrogenase activities related to the binding-protein-dependent transport of galactose and maltose in toluenized cells of Escherichia coli.
    Richarme G; Heine HG
    Eur J Biochem; 1986 Apr; 156(2):399-405. PubMed ID: 3084252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel type of coupling between proline and galactoside transport in Escherichia coli.
    Flagg JL; Wilson TH
    Membr Biochem; 1978; 1(1-2):61-72. PubMed ID: 388152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactose permease of Escherichia coli catalyzes active beta-galactoside transport in a gram-positive bacterium.
    Brabetz W; Liebl W; Schleifer KH
    J Bacteriol; 1993 Nov; 175(22):7488-91. PubMed ID: 8226697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipoic acid provokes inhibition and aggregation of the maltose binding protein of Escherichia coli.
    Richarme G
    Biochem Int; 1986 Jun; 12(6):897-903. PubMed ID: 3091027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-coupling of the transport system of Escherichia coli dependent on maltose-binding protein.
    Ferenci T; Boos W; Schwartz M; Szmelcman S
    Eur J Biochem; 1977 May; 75(1):187-93. PubMed ID: 140802
    [No Abstract]   [Full Text] [Related]  

  • 8. Energetics of galactose, proline, and glutamine transport in a cytochrome-deficient mutant of Salmonella typhimurium.
    Singh AP; Bragg PD
    J Supramol Struct; 1977; 6(3):389-98. PubMed ID: 22779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIGlc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium.
    Saier MH; Novotny MJ; Comeau-Fuhrman D; Osumi T; Desai JD
    J Bacteriol; 1983 Sep; 155(3):1351-7. PubMed ID: 6350268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding protein-dependent transports in 2-oxo acids dehydrogenase mutants of Escherichia coli.
    Richarme G
    Biochim Biophys Acta; 1987 Sep; 893(2):373-7. PubMed ID: 3113480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Counter-transport mediated by the lactose permease of Escherichia coli.
    Bentaboulet M; Kepes A
    Biochim Biophys Acta; 1977 Nov; 471(1):125-34. PubMed ID: 21690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of lactose transport into Escherichia coli in the presence and absence of a protonmotive force.
    Page MG; West IC
    FEBS Lett; 1980 Nov; 120(2):187-91. PubMed ID: 7002613
    [No Abstract]   [Full Text] [Related]  

  • 13. Involvement of lactose enzyme II of the phosphotransferase system in rapid expulsion of free galactosides from Streptococcus pyogenes.
    Reizer J; Saier MH
    J Bacteriol; 1983 Oct; 156(1):236-42. PubMed ID: 6413489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose, and lactose transport systems from regulation by the phosphoenolpyruvate:sugar phosphotransferase system.
    Saier MH; Straud H; Massman LS; Judice JJ; Newman MJ; Feucht BU
    J Bacteriol; 1978 Mar; 133(3):1358-67. PubMed ID: 346569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maintenance of a neutral cytoplasmic pH is not obligatory for growth of Escherichia coli and Streptococcus faecalis at an alkaline pH.
    Mugikura S; Nishikawa M; Igarashi K; Kobayashi H
    J Biochem; 1990 Jul; 108(1):86-91. PubMed ID: 2121723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal events associated with active membrane transport in Escherichia coli.
    Long RA; Sprott GD; Labelle JL; Martin WG; Schneider H
    Biochem Biophys Res Commun; 1975 May; 64(2):656-62. PubMed ID: 1096880
    [No Abstract]   [Full Text] [Related]  

  • 17. Two systems for the uptake of phosphate in Escherichia coli.
    Rosenberg H; Gerdes RG; Chegwidden K
    J Bacteriol; 1977 Aug; 131(2):505-11. PubMed ID: 328484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding-protein-dependent lactose transport in Agrobacterium radiobacter.
    Greenwood JA; Cornish A; Jones CW
    J Bacteriol; 1990 Apr; 172(4):1703-10. PubMed ID: 2318800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy coupling to K+ uptake via the Trk system in Escherichia coli: the role of ATP.
    Stewart LM; Bakker EP; Booth IR
    J Gen Microbiol; 1985 Jan; 131(1):77-85. PubMed ID: 3886836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of alpha-methyl glucoside in a cytochrome-deficient mutant of Escherichia coli K-12.
    Singh AP; Bragg PD
    FEBS Lett; 1976 Apr; 64(1):169-72. PubMed ID: 131708
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.