These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 39202180)

  • 41. Small training dataset convolutional neural networks for application-specific super-resolution microscopy.
    Mannam V; Howard S
    J Biomed Opt; 2023 Mar; 28(3):036501. PubMed ID: 36925620
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent advances in the MOBJ algorithm for training artificial neural networks.
    Teixeira RD; Braga AP; Takahashi RH; Saldanha RR
    Int J Neural Syst; 2001 Jun; 11(3):265-70. PubMed ID: 11574964
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Multi-Objective Evolutionary Approach Based on Graph-in-Graph for Neural Architecture Search of Convolutional Neural Networks.
    Xue Y; Jiang P; Neri F; Liang J
    Int J Neural Syst; 2021 Sep; 31(9):2150035. PubMed ID: 34304718
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Brain tumor classification for MRI images using dual-discriminator conditional generative adversarial network.
    Selvi T K; Sumaiya Begum A; Poonkuzhali P; Aarthi R
    Electromagn Biol Med; 2024 Apr; 43(1-2):81-94. PubMed ID: 38461438
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Novel Steganography Method for Infrared Image Based on Smooth Wavelet Transform and Convolutional Neural Network.
    Bai Y; Li L; Lu J; Zhang S; Chu N
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420527
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting Drug-Target Affinity Based on Recurrent Neural Networks and Graph Convolutional Neural Networks.
    Tian Q; Ding M; Yang H; Yue C; Zhong Y; Du Z; Liu D; Liu J; Deng Y
    Comb Chem High Throughput Screen; 2022; 25(4):634-641. PubMed ID: 33588722
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phylogenetic convolutional neural networks in metagenomics.
    Fioravanti D; Giarratano Y; Maggio V; Agostinelli C; Chierici M; Jurman G; Furlanello C
    BMC Bioinformatics; 2018 Mar; 19(Suppl 2):49. PubMed ID: 29536822
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Novel maximum-margin training algorithms for supervised neural networks.
    Ludwig O; Nunes U
    IEEE Trans Neural Netw; 2010 Jun; 21(6):972-84. PubMed ID: 20409990
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging.
    Akçakaya M; Moeller S; Weingärtner S; Uğurbil K
    Magn Reson Med; 2019 Jan; 81(1):439-453. PubMed ID: 30277269
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Brain tumor segmentation based on optimized convolutional neural network and improved chimp optimization algorithm.
    Ranjbarzadeh R; Zarbakhsh P; Caputo A; Tirkolaee EB; Bendechache M
    Comput Biol Med; 2024 Jan; 168():107723. PubMed ID: 38000242
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Minimum and Maximum Entropy Distributions for Binary Systems with Known Means and Pairwise Correlations.
    Albanna BF; Hillar C; Sohl-Dickstein J; DeWeese MR
    Entropy (Basel); 2017 Aug; 19(8):. PubMed ID: 33535369
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep Convolutional Generative Adversarial Network (dcGAN) Models for Screening and Design of Small Molecules Targeting Cannabinoid Receptors.
    Bian Y; Wang J; Jun JJ; Xie XQ
    Mol Pharm; 2019 Nov; 16(11):4451-4460. PubMed ID: 31589460
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Automatic segmentation of high-risk clinical target volume and organs at risk in brachytherapy of cervical cancer with a convolutional neural network.
    Zhu J; Yan J; Zhang J; Yu L; Song A; Zheng Z; Chen Y; Wang S; Chen Q; Liu Z; Zhang F
    Cancer Radiother; 2024 Aug; 28(4):354-364. PubMed ID: 39147623
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Generative Text Convolutional Neural Network for Hierarchical Document Representation Learning.
    Wang C; Chen B; Duan Z; Chen W; Zhang H; Zhou M
    IEEE Trans Pattern Anal Mach Intell; 2023 Apr; 45(4):4586-4604. PubMed ID: 35853051
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High Similarity Image Recognition and Classification Algorithm Based on Convolutional Neural Network.
    Liu Z; Sun L; Zhang Q
    Comput Intell Neurosci; 2022; 2022():2836486. PubMed ID: 35449738
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optical Diffractive Convolutional Neural Networks Implemented in an All-Optical Way.
    Yu Y; Cao Y; Wang G; Pang Y; Lang L
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420913
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.
    Ahmad B; Sun J; You Q; Palade V; Mao Z
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising.
    Wang H; Ma Y; Zhang A; Lin D; Qi Y; Li J
    Comput Math Methods Med; 2023; 2023():6737102. PubMed ID: 36818542
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Discrimination of unsound wheat kernels based on deep convolutional generative adversarial network and near-infrared hyperspectral imaging technology.
    Li H; Zhang L; Sun H; Rao Z; Ji H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 268():120722. PubMed ID: 34902690
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pelvic bone tumor segmentation fusion algorithm based on fully convolutional neural network and conditional random field.
    Wu S; Ke Z; Cai L; Wang L; Zhang X; Ke Q; Ye Y
    J Bone Oncol; 2024 Apr; 45():100593. PubMed ID: 38495379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.