These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 39202858)
1. Zirconium Phosphate-Pillared Zeolite MCM-36 for Green Production of γ-Valerolactone from Levulinic Acid via Catalytic Transfer Hydrogenation. Hou P; Su H; Jin K; Li Q; Yan W Molecules; 2024 Aug; 29(16):. PubMed ID: 39202858 [TBL] [Abstract][Full Text] [Related]
2. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators. Yun WC; Yang MT; Lin KA J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993 [TBL] [Abstract][Full Text] [Related]
3. Noble Metal-Free Hierarchical ZrY Zeolite Efficient for Hydrogenation of Biomass-Derived Levulinic Acid. Hu D; Xu H; Wu Z; Zhang M; Zhao Z; Wang Y; Yan K Front Chem; 2021; 9():725175. PubMed ID: 34712649 [TBL] [Abstract][Full Text] [Related]
4. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source. Yu Z; Lu X; Xiong J; Li X; Bai H; Ji N ChemSusChem; 2020 Jun; 13(11):2916-2930. PubMed ID: 32153131 [TBL] [Abstract][Full Text] [Related]
5. Vapor-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone Over Bi-Functional Ni/HZSM-5 Catalyst. Popova M; Djinović P; Ristić A; Lazarova H; Dražić G; Pintar A; Balu AM; Novak Tušar N Front Chem; 2018; 6():285. PubMed ID: 30065923 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media. Seretis A; Diamantopoulou P; Thanou I; Tzevelekidis P; Fakas C; Lilas P; Papadogianakis G Front Chem; 2020; 8():221. PubMed ID: 32373576 [TBL] [Abstract][Full Text] [Related]
7. Cascade Upgrading of Biomass-Derived Furfural to γ-Valerolactone Over Zr/Hf-Based Catalysts. Sun W; Li H; Wang X; Liu A Front Chem; 2022; 10():863674. PubMed ID: 35321478 [TBL] [Abstract][Full Text] [Related]
8. Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts. Popova M; Trendafilova I; Oykova M; Mitrev Y; Shestakova P; Mihályi MR; Szegedi Á Molecules; 2022 Aug; 27(17):. PubMed ID: 36080151 [TBL] [Abstract][Full Text] [Related]
9. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond. Omoruyi U; Page S; Hallett J; Miller PW ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831 [TBL] [Abstract][Full Text] [Related]
10. Surface-sealing encapsulation of phosphotungstic acid in microporous UiO-66 as a bifunctional catalyst for transfer hydrogenation of levulinic acid to γ-valerolactone. Tan H; Rong S; Zong Z; Zhang P; Zhao R; Song F; Cui H; Chen ZN; Yi W; Zhang F Phys Chem Chem Phys; 2023 Jul; 25(27):18215-18223. PubMed ID: 37394949 [TBL] [Abstract][Full Text] [Related]
11. Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Polyoxometalate@Zr-Based Metal-Organic Frameworks: The Synergistic Effect of Bro̷nsted and Lewis Acidic Sites. Li J; Zhao S; Li Z; Liu D; Chi Y; Hu C Inorg Chem; 2021 Jun; 60(11):7785-7793. PubMed ID: 33755456 [TBL] [Abstract][Full Text] [Related]
12. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support. Sorokina SA; Mikhailov SP; Kuchkina NV; Bykov AV; Vasiliev AL; Ezernitskaya MG; Golovin AL; Nikoshvili LZ; Sulman MG; Shifrina ZB Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054984 [TBL] [Abstract][Full Text] [Related]
13. Catalytic hydrogenation of levulinic acid to γ-valerolactone over lignin-metal coordinated carbon nanospheres in water. Xu Y; Liang Y; Guo H; Qi X Int J Biol Macromol; 2023 Jun; 240():124451. PubMed ID: 37062379 [TBL] [Abstract][Full Text] [Related]
14. MoO Wang L; Yang Y; Yin P; Ren Z; Liu W; Tian Z; Zhang Y; Xu E; Yin J; Wei M ACS Appl Mater Interfaces; 2021 Jul; 13(27):31799-31807. PubMed ID: 34197068 [TBL] [Abstract][Full Text] [Related]
15. Effects of Solid Acid Supports on the Bifunctional Catalysis of Levulinic Acid to γ-Valerolactone: Catalytic Activity and Stability. Yu Z; Lu X; Bai H; Xiong J; Feng W; Ji N Chem Asian J; 2020 Apr; 15(8):1182-1201. PubMed ID: 32012471 [TBL] [Abstract][Full Text] [Related]
16. Highly Efficient Hydrogenation of Levulinic Acid into γ-Valerolactone using an Iron Pincer Complex. Yi Y; Liu H; Xiao LP; Wang B; Song G ChemSusChem; 2018 May; 11(9):1474-1478. PubMed ID: 29575709 [TBL] [Abstract][Full Text] [Related]
17. In Situ Construction of a Co/ZnO@C Heterojunction Catalyst for Efficient Hydrogenation of Biomass Derivative under Mild Conditions. Shao YR; Zhou L; Yu L; Li ZF; Li YT; Li W; Hu TL ACS Appl Mater Interfaces; 2022 Apr; 14(15):17195-17207. PubMed ID: 35384659 [TBL] [Abstract][Full Text] [Related]
18. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions. Li B; Zhao H; Fang J; Li J; Gao W; Ma K; Liu C; Yang H; Ren X; Dong Z J Colloid Interface Sci; 2022 Oct; 623():905-914. PubMed ID: 35636298 [TBL] [Abstract][Full Text] [Related]
19. Micro/mesoporous LTL derived materials for catalytic transfer hydrogenation and acid reactions of bio-based levulinic acid and furanics. Antunes MM; Silva AF; Fernandes A; Ribeiro F; Neves P; Pillinger M; Valente AA Front Chem; 2022; 10():1006981. PubMed ID: 36247668 [TBL] [Abstract][Full Text] [Related]
20. Conversion of levulinic acid to γ-valerolactone over Ru/Al Wang R; Chen L; Zhang X; Zhang Q; Li Y; Wang C; Ma L RSC Adv; 2018 Dec; 8(71):40989-40995. PubMed ID: 35557899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]