These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 39203235)

  • 1. Multifunctional Design of Catalysts for Seawater Electrolysis for Hydrogen Production.
    Cui C; Zhang H; Wang D; Song J; Yang Y
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Materials Design and System Innovation for Direct and Indirect Seawater Electrolysis.
    He W; Li X; Tang C; Zhou S; Lu X; Li W; Li X; Zeng X; Dong P; Zhang Y; Zhang Q
    ACS Nano; 2023 Nov; 17(22):22227-22239. PubMed ID: 37965727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in direct seawater splitting for producing hydrogen.
    Xu SW; Li J; Zhang N; Shen W; Zheng Y; Xi P
    Chem Commun (Camb); 2023 Aug; 59(65):9792-9802. PubMed ID: 37527284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater.
    Xiao X; Yang L; Sun W; Chen Y; Yu H; Li K; Jia B; Zhang L; Ma T
    Small; 2022 Mar; 18(11):e2105830. PubMed ID: 34878210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized Transition Metal Phosphides for Direct Seawater Electrolysis: Current Trends.
    Li Y; Xin T; Cao Z; Zheng W; He P; Yoon Suk Lee L
    ChemSusChem; 2024 Aug; 17(15):e202301926. PubMed ID: 38477449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in hydrogen production from electrocatalytic seawater splitting.
    Wang C; Shang H; Jin L; Xu H; Du Y
    Nanoscale; 2021 May; 13(17):7897-7912. PubMed ID: 33881101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Recent Progresses of Electrodes and Electrolysers for Seawater Electrolysis.
    Zhang F; Zhou J; Chen X; Zhao S; Zhao Y; Tang Y; Tian Z; Yang Q; Slavcheva E; Lin Y; Zhang Q
    Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design Strategy of Corrosion-Resistant Electrodes for Seawater Electrolysis.
    Zhao L; Li X; Yu J; Zhou W
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bipolar Membrane Seawater Splitting for Hydrogen Production: A Review.
    Adisasmito S; Khoiruddin K; Sutrisna PD; Wenten IG; Siagian UWR
    ACS Omega; 2024 Apr; 9(13):14704-14727. PubMed ID: 38585051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Seawater Electrolysis: From Catalyst Design to Device Applications.
    Fei H; Liu R; Liu T; Ju M; Lei J; Wang Z; Wang S; Zhang Y; Chen W; Wu Z; Ni M; Wang J
    Adv Mater; 2024 Apr; 36(17):e2309211. PubMed ID: 37918125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging materials and technologies for electrocatalytic seawater splitting.
    Jin H; Xu J; Liu H; Shen H; Yu H; Jaroniec M; Zheng Y; Qiao SZ
    Sci Adv; 2023 Oct; 9(42):eadi7755. PubMed ID: 37851797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal nitrides for seawater electrolysis.
    Hu H; Wang X; Attfield JP; Yang M
    Chem Soc Rev; 2024 Jan; 53(1):163-203. PubMed ID: 38019124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Atomic-Level Synthesis to Device-Scale Reactors: A Multiscale Approach to Water Electrolysis.
    Du X; Qi M; Wang Y
    Acc Chem Res; 2024 May; 57(9):1298-1309. PubMed ID: 38597422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Multilevel Collaborative Catalytic Interfaces with Multifunctional Iron Sites Enabling High-Performance Real Seawater Splitting.
    Zhang F; Liu Y; Yu F; Pang H; Zhou X; Li D; Ma W; Zhou Q; Mo Y; Zhou H
    ACS Nano; 2023 Jan; ():. PubMed ID: 36594437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoporous Nickel Cathode with an Electrostatic Chlorine-Resistant Surface for Industrial Seawater Electrolysis Hydrogen Production.
    Wang J; Li Y; Xu T; Zheng J; Xiao K; Sun B; Ge M; Yuan X; Zhou C; Cai Z
    Inorg Chem; 2024 Apr; 63(13):5773-5778. PubMed ID: 38498977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Floating Seawater Splitting Device Based on NiFeCrMo Metal Hydroxide Electrocatalyst and Perovskite/Silicon Tandem Solar Cells.
    Pan S; Li R; Wang J; Zhang Q; Wang M; Shi B; Wang P; Zhao Y; Zhang X
    ACS Nano; 2023 Mar; 17(5):4539-4550. PubMed ID: 36808966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A membrane-based seawater electrolyser for hydrogen generation.
    Xie H; Zhao Z; Liu T; Wu Y; Lan C; Jiang W; Zhu L; Wang Y; Yang D; Shao Z
    Nature; 2022 Dec; 612(7941):673-678. PubMed ID: 36450987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Earth-Abundant Catalyst-Based Seawater Photoelectrolysis System with 17.9% Solar-to-Hydrogen Efficiency.
    Hsu SH; Miao J; Zhang L; Gao J; Wang H; Tao H; Hung SF; Vasileff A; Qiao SZ; Liu B
    Adv Mater; 2018 May; 30(18):e1707261. PubMed ID: 29569283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term Durability of Seawater Electrolysis for Hydrogen: From Catalysts to Systems.
    Liu Y; Wang Y; Fornasiero P; Tian G; Strasser P; Yang XY
    Angew Chem Int Ed Engl; 2024 Nov; 63(47):e202412087. PubMed ID: 39205621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-Saving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation.
    Zhang L; Wang Z; Qiu J
    Adv Mater; 2022 Apr; 34(16):e2109321. PubMed ID: 35150022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.