These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 39203696)
1. Development of a Portable Residual Chlorine Detection Device with a Combination of Microfluidic Chips and LS-BP Algorithm to Achieve Accurate Detection of Residual Chlorine in Water. Wang T; Niu J; Pang H; Meng X; Sun R; Xie J Micromachines (Basel); 2024 Aug; 15(8):. PubMed ID: 39203696 [TBL] [Abstract][Full Text] [Related]
2. Development of Rapid and High-Precision Colorimetric Device for Organophosphorus Pesticide Detection Based on Microfluidic Mixer Chip. Xie J; Pang H; Sun R; Wang T; Meng X; Zhou Z Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33803445 [TBL] [Abstract][Full Text] [Related]
3. A reusable fiber-embedded microfluidic chip for rapid and sensitive on-site detection of kanamycin residues in water environments. Chen D; Xu W; Huang Z; Liu J; Long F Analyst; 2023 Nov; 148(23):6120-6129. PubMed ID: 37929744 [TBL] [Abstract][Full Text] [Related]
4. [3D printed portable gel electrophoresis device for rapid detection of proteins]. Li Y; Wang D; Nong Q; Liu L; Zhang M; Liang Y; Hu L; He B; Jiang G Se Pu; 2020 Nov; 38(11):1316-1322. PubMed ID: 34213103 [TBL] [Abstract][Full Text] [Related]
5. Sub-nanoliter, real-time flow monitoring in microfluidic chips using a portable device and smartphone. Temiz Y; Delamarche E Sci Rep; 2018 Jul; 8(1):10603. PubMed ID: 30006576 [TBL] [Abstract][Full Text] [Related]
6. [Applications of microfluidic paper-based chips in environmental analysis and detection]. Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581 [TBL] [Abstract][Full Text] [Related]
7. Development of microfluidic devices for on-site water quality testing using glass molding process. Tazawa H; Sato T; Sakuta Y; Miyake R Anal Sci; 2023 Aug; 39(8):1269-1277. PubMed ID: 37103769 [TBL] [Abstract][Full Text] [Related]
8. Portable all-in-one automated microfluidic system (PAMICON) with 3D-printed chip using novel fluid control mechanism. Zhang Y; Tseng TM; Schlichtmann U Sci Rep; 2021 Sep; 11(1):19189. PubMed ID: 34584118 [TBL] [Abstract][Full Text] [Related]
9. A novel, low-cost microfluidic device with an integrated filter for rapid, ultrasensitive, and high-throughput bioburden detection. Hasan MS; Sundberg C; Tolosa M; Andar A; Ge X; Kostov Y; Rao G Sci Rep; 2023 Jul; 13(1):12084. PubMed ID: 37495652 [TBL] [Abstract][Full Text] [Related]
10. A suspending-droplet mode paper-based microfluidic platform for low-cost, rapid, and convenient detection of lead(II) ions in liquid solution. Sun H; Li W; Dong ZZ; Hu C; Leung CH; Ma DL; Ren K Biosens Bioelectron; 2018 Jan; 99():361-367. PubMed ID: 28800508 [TBL] [Abstract][Full Text] [Related]
11. Simple-to-use and portable device for free chlorine determination based on microwave-assisted synthesized carbon dots and smartphone images. Uriarte D; Vidal E; Canals A; Domini CE; Garrido M Talanta; 2021 Jul; 229():122298. PubMed ID: 33838783 [TBL] [Abstract][Full Text] [Related]
12. Portable microfluidic device with thermometer-like display for real-time visual quantitation of Cadmium(II) contamination in drinking water. Wang G; Wu M; Chu LT; Chen TH Anal Chim Acta; 2021 May; 1160():338444. PubMed ID: 33894969 [TBL] [Abstract][Full Text] [Related]
13. Integrated High-Throughput Centrifugal Microfluidic Chip Device for Pathogen Detection On-Site. Lu S; Yang Y; Cui S; Li A; Qian C; Li X Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920617 [TBL] [Abstract][Full Text] [Related]
14. A capillary-based microfluidic chip with the merits of low cost and easy fabrication for the rapid detection of acute myocardial infarction. Li X; Xu C; Chen H; Yi F; Liao J; Han J; Li C; Han W; Han RPS; Chen H Talanta; 2023 Dec; 265():124924. PubMed ID: 37437393 [TBL] [Abstract][Full Text] [Related]
15. Joint majorization of waterworks and secondary chlorination points considering the chloric odor and economic investment in the DWDS using machine learning and optimization algorithms. Mao R; Zhang K; Zhang Q; Xu J; Cen C; Pan R; Zhang T Water Res; 2022 Jul; 220():118595. PubMed ID: 35613482 [TBL] [Abstract][Full Text] [Related]
16. 3D Printing of Individualized Microfluidic Chips with DLP-Based Printer. Qiu J; Li J; Guo Z; Zhang Y; Nie B; Qi G; Zhang X; Zhang J; Wei R Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959581 [TBL] [Abstract][Full Text] [Related]
17. Rapid nitrate determination with a portable lab-on-chip device based on double microstructured assisted reactors. Wang F; Zhu J; Hu X; Chen L; Zuo Y; Yang Y; Jiang F; Sun C; Zhao W; Han X Lab Chip; 2021 Mar; 21(6):1109-1117. PubMed ID: 33527941 [TBL] [Abstract][Full Text] [Related]
18. Labchip-based diagnosis system for on-site application: Sensitive and easy-to-implement detection of single recoverable Cronobacter in infant formula without post-enrichment treatment. Cho TJ; Kim HW; Yoo C; Kim SW; Rhee MS Int J Food Microbiol; 2020 Aug; 327():108659. PubMed ID: 32413591 [TBL] [Abstract][Full Text] [Related]
19. [Fabrications of a poly (methyl methacrylate) (PMMA) microfluidic chip-based DNA analysis device]. Du XG Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3379-82. PubMed ID: 20210174 [TBL] [Abstract][Full Text] [Related]
20. Photometric Sensing of Active Chlorine, Total Chlorine, and pH on a Microfluidic Chip for Online Swimming Pool Monitoring. Elmas S; Pospisilova A; Sekulska AA; Vasilev V; Nann T; Thornton S; Priest C Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32486236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]