These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 39203696)
41. Effect of algicidal quaternaries on the germicidal activity of chlorine on swimming pool water. Koski TA; Ortenzio LF; Stuart LS Appl Microbiol; 1967 Nov; 15(6):1291-5. PubMed ID: 4965942 [TBL] [Abstract][Full Text] [Related]
42. Flexible microfluidic colorimetric detection chip integrated with ABTS Li F; Jiang J; Shen N; Peng H; Luo Y; Li N; Huang L; Lu Y; Liu L; Li B; He J Anal Chim Acta; 2024 Apr; 1299():342453. PubMed ID: 38499424 [TBL] [Abstract][Full Text] [Related]
43. Convenient two-step method constructed silicon-based microfluidic chip for fast CYP2C19 SNPs detection. Wang H; Yan C; Tong H; Ye X; Yuan X; Liu C; Li H RSC Adv; 2024 Aug; 14(36):26007-26015. PubMed ID: 39161448 [TBL] [Abstract][Full Text] [Related]
44. Fully Integrated, Automated, and Smartphone Enabled Point-of-Source Portable Platform With Microfluidic Device for Nitrite Detection. Dudala S; Dubey SK; Goel S IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1518-1524. PubMed ID: 31494558 [TBL] [Abstract][Full Text] [Related]
45. Variability of residual chlorine in swimming pool water and determination of chlorine consumption for maintaining hygienic safety of bathers with a simple mass balance model. Berg AP; Fang TA; Tang HL J Water Health; 2019 Apr; 17(2):227-236. PubMed ID: 30942773 [TBL] [Abstract][Full Text] [Related]
46. The mixed-order chlorine decay model with an analytical solution and corresponding trihalomethane generation model in drinking water. Feng W; Ma W; Zhao Q; Li F; Zhong D; Deng L; Zhu Y; Li Z; Zhou Z; Wu R; Liu L; Ma J Environ Pollut; 2023 Oct; 335():122227. PubMed ID: 37479166 [TBL] [Abstract][Full Text] [Related]
47. Portable, Easy-to-Operate, and Antifouling Microcapsule Array Chips Fabricated by 3D Ice Printing for Visual Target Detection. Zhang HZ; Zhang FT; Zhang XH; Huang D; Zhou YL; Li ZH; Zhang XX Anal Chem; 2015 Jun; 87(12):6397-402. PubMed ID: 25970032 [TBL] [Abstract][Full Text] [Related]
48. A portable multi-channel fluorescent paper-based microfluidic chip based on smartphone imaging for simultaneous detection of four heavy metals. Yuan M; Li C; Zheng Y; Cao H; Ye T; Wu X; Hao L; Yin F; Yu J; Xu F Talanta; 2024 Jan; 266(Pt 2):125112. PubMed ID: 37659229 [TBL] [Abstract][Full Text] [Related]
49. Machine learning assisted discrimination and detection of antibiotics by using multicolor microfluidic chemiluminescence detection chip. Li F; Zhu M; Li Z; Shen N; Peng H; Li B; He J Talanta; 2024 Mar; 269():125446. PubMed ID: 38043343 [TBL] [Abstract][Full Text] [Related]
50. A portable microfluidic device for thermally controlled granular sample manipulation. Zhang K; Xiang W; Jia N; Yu M; Liu J; Xie Z Lab Chip; 2024 Jan; 24(3):549-560. PubMed ID: 38168724 [TBL] [Abstract][Full Text] [Related]
51. All-fiber biological detection microfluidic chip based on space division and wavelength division multiplexing technologies. Wei Y; Ren Z; Liu C; Jiang T; Wang R; Shi C; Liu C Lab Chip; 2022 Nov; 22(23):4501-4510. PubMed ID: 36305279 [TBL] [Abstract][Full Text] [Related]
52. [Research progress on analysis of human papillomavirus by microchip capillary electrophoresis]. Lin X; Wang C; Lin JM Se Pu; 2020 Oct; 38(10):1179-1188. PubMed ID: 34213114 [TBL] [Abstract][Full Text] [Related]
53. Machine-learning-assisted prediction and optimized kinetic modelling of residual chlorine decay for enhanced water quality management. Jafari I; Luo R; Lim FY; Hui NS; Jiangyong H Chemosphere; 2023 Nov; 341():140011. PubMed ID: 37657703 [TBL] [Abstract][Full Text] [Related]
54. A portable microfluidic photometric detection method based on enzyme linked immunoscatter enhancement. Li T; Yang N; Pan X; Zhang X; Xu L Biosens Bioelectron; 2024 Jan; 244():115794. PubMed ID: 37918048 [TBL] [Abstract][Full Text] [Related]
55. Design and fabrication of a microfluidic chip to detect tumor markers. Sun C; You H; Gao N; Chang J; Gao Q; Xie Y; Xie Y; Xu RX RSC Adv; 2020 Oct; 10(65):39779-39785. PubMed ID: 35515361 [TBL] [Abstract][Full Text] [Related]
56. 3D Printing Solutions for Microfluidic Chip-To-World Connections. van den Driesche S; Lucklum F; Bunge F; Vellekoop MJ Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393347 [TBL] [Abstract][Full Text] [Related]
57. Optimising the measurement of peracetic acid to assess its degradation during drinking water disinfection. Zhang K; San Y; Cao C; Zhang T; Cen C; Zhou X Environ Sci Pollut Res Int; 2020 Sep; 27(27):34135-34146. PubMed ID: 32557042 [TBL] [Abstract][Full Text] [Related]
58. Ultraportable Flow Cytometer Based on an All-Glass Microfluidic Chip. Li J; Cui Y; Xie Q; Jiang T; Xin S; Liu P; Zhou T; Li Q Anal Chem; 2023 Jan; 95(4):2294-2302. PubMed ID: 36654498 [TBL] [Abstract][Full Text] [Related]
59. Multiplex and on-site PCR detection of swine diseases based on the microfluidic chip system. Jiang Y; Jiang S; Wu Y; Zhou B; Wang K; Jiang L; Long Y; Chen G; Zeng D BMC Vet Res; 2021 Mar; 17(1):117. PubMed ID: 33712000 [TBL] [Abstract][Full Text] [Related]
60. Performance Evaluation of a Novel Ultrafast Molecular Diagnostic Device Integrated With Microfluidic Chips and Dual Temperature Modules. Lin S; Song X; Zhu K; Shao Q; Chen Y; Cheng W; Lei Z; Chen Y; Luo Y; Jin D Front Bioeng Biotechnol; 2022; 10():895236. PubMed ID: 35662850 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]