These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 39204482)

  • 1. Biodegradable Biobased Polymers: A Review of the State of the Art, Challenges, and Future Directions.
    Jha S; Akula B; Enyioma H; Novak M; Amin V; Liang H
    Polymers (Basel); 2024 Aug; 16(16):. PubMed ID: 39204482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed.
    Nakajima H; Dijkstra P; Loos K
    Polymers (Basel); 2017 Oct; 9(10):. PubMed ID: 30965822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Mineral Fillers on the Mechanical Properties of Commercially Available Biodegradable Polymers.
    Post W; Kuijpers LJ; Zijlstra M; van der Zee M; Molenveld K
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33513697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance Spectrum of Home-Compostable Biopolymer Fibers Compared to a Petrochemical Alternative.
    Schick S; Groten R; Seide GH
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered biosynthesis of biodegradable polymers.
    Jambunathan P; Zhang K
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1037-58. PubMed ID: 27260524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biobased, biodegradable and compostable plastics: chemical nature, biodegradation pathways and environmental strategy.
    Nizamuddin S; Chen C
    Environ Sci Pollut Res Int; 2024 Feb; 31(6):8387-8399. PubMed ID: 38177642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.
    Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE
    Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable biopolymers: Real impact to environment pollution.
    Pinaeva LG; Noskov AS
    Sci Total Environ; 2024 Oct; 947():174445. PubMed ID: 38981547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inspired by nature: Microbial production, degradation and valorization of biodegradable bioplastics for life-cycle-engineered products.
    García-Depraect O; Bordel S; Lebrero R; Santos-Beneit F; Börner RA; Börner T; Muñoz R
    Biotechnol Adv; 2021 Dec; 53():107772. PubMed ID: 34015389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities.
    O'Dea RM; Willie JA; Epps TH
    ACS Macro Lett; 2020 Apr; 9(4):476-493. PubMed ID: 35648496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials.
    Asgher M; Qamar SA; Bilal M; Iqbal HMN
    Food Res Int; 2020 Nov; 137():109625. PubMed ID: 33233213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Film forming microbial biopolymers for commercial applications--a review.
    Vijayendra SV; Shamala TR
    Crit Rev Biotechnol; 2014 Dec; 34(4):338-57. PubMed ID: 23919238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis.
    Ene N; Savoiu VG; Spiridon M; Paraschiv CI; Vamanu E
    Curr Pharm Des; 2023; 29(39):3089-3102. PubMed ID: 38099526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding Poly(lactic acid) (PLA) and Polyhydroxyalkanoates (PHAs) Applications: A Review on Modifications and Effects.
    Naser AZ; Deiab I; Defersha F; Yang S
    Polymers (Basel); 2021 Dec; 13(23):. PubMed ID: 34883773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The comparative toxicity of biobased, modified biobased, biodegradable, and petrochemical-based microplastics on the brackish water flea Diaphanosoma celebensis.
    Ali W; Jeong H; Tisné ML; Favrelle-Huret A; Thielemans W; Zinck P; Souissi S; Lee JS
    Sci Total Environ; 2024 Sep; 944():173747. PubMed ID: 38838999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial Production of Biodegradable Lactate-Based Polymers and Oligomeric Building Blocks From Renewable and Waste Resources.
    Nduko JM; Taguchi S
    Front Bioeng Biotechnol; 2020; 8():618077. PubMed ID: 33614605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are Biobased Plastics Green Alternatives?-A Critical Review.
    Ferreira-Filipe DA; Paço A; Duarte AC; Rocha-Santos T; Patrício Silva AL
    Int J Environ Res Public Health; 2021 Jul; 18(15):. PubMed ID: 34360022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomacromolecules, Biobased and Biodegradable Polymers (2017-2019).
    Teramoto N
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33081342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blending Ferulic Acid Derivatives and Polylactic Acid into Biobased and Transparent Elastomeric Materials with Shape Memory Properties.
    Gallos A; Crowet JM; Michely L; Raghuwanshi VS; Mention MM; Langlois V; Dauchez M; Garnier G; Allais F
    Biomacromolecules; 2021 Apr; 22(4):1568-1578. PubMed ID: 33689317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering yeast cell factories to produce biodegradable plastics and their monomers: Current status and prospects.
    Zhang FL; Zhang L; Zeng DW; Liao S; Fan Y; Champreda V; Runguphan W; Zhao XQ
    Biotechnol Adv; 2023 Nov; 68():108222. PubMed ID: 37516259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.