These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 39204829)
1. Optimization of Operational Parameters of Plant Protection UAV. Xing W; Cui Y; Wang X; Shen J Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204829 [TBL] [Abstract][Full Text] [Related]
2. Droplet distribution in cotton canopy using single-rotor and four-rotor unmanned aerial vehicles. Meng Y; Ma Y; Wang Z; Hu H PeerJ; 2022; 10():e13572. PubMed ID: 35722263 [TBL] [Abstract][Full Text] [Related]
3. Research on a UAV spray system combined with grid atomized droplets. Xue X; Tian Y; Yang Z; Li Z; Lyu S; Song S; Sun D Front Plant Sci; 2023; 14():1286332. PubMed ID: 38235193 [TBL] [Abstract][Full Text] [Related]
4. Design and validation of a multi-objective waypoint planning algorithm for UAV spraying in orchards based on improved ant colony algorithm. Tian H; Mo Z; Ma C; Xiao J; Jia R; Lan Y; Zhang Y Front Plant Sci; 2023; 14():1101828. PubMed ID: 36818859 [TBL] [Abstract][Full Text] [Related]
5. Determination of the effective swath of a plant protection UAV adapted to mist nozzles in mountain Nangguo pear orchards. Liu Y; Yao W; Guo S; Yan H; Yu Z; Meng S; Chen D; Chen C Front Plant Sci; 2024; 15():1336580. PubMed ID: 38974984 [TBL] [Abstract][Full Text] [Related]
6. Optimizing UAV spray parameters to improve precise control of tobacco pests at different growth stages. Shi X; Du Y; Liu X; Liu C; Hou Q; Chen L; Yong R; Ma J; Yang D; Yuan H; Guo J; Liu P; Yan X Pest Manag Sci; 2024 Nov; 80(11):5809-5819. PubMed ID: 39007292 [TBL] [Abstract][Full Text] [Related]
7. Swath pattern analysis from a multi-rotor unmanned aerial vehicle configured for pesticide application. Richardson B; Rolando CA; Somchit C; Dunker C; Strand TM; Kimberley MO Pest Manag Sci; 2020 Apr; 76(4):1282-1290. PubMed ID: 31595645 [TBL] [Abstract][Full Text] [Related]
8. Numerical simulation and verification of rotor downwash flow field of plant protection UAV at different rotor speeds. Chang K; Chen S; Wang M; Xue X; Lan Y Front Plant Sci; 2022; 13():1087636. PubMed ID: 36777541 [TBL] [Abstract][Full Text] [Related]
9. UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Biglia A; Grella M; Bloise N; Comba L; Mozzanini E; Sopegno A; Pittarello M; Dicembrini E; Alcatrão LE; Guglieri G; Balsari P; Aimonino DR; Gay P Sci Total Environ; 2022 Nov; 845():157292. PubMed ID: 35820523 [TBL] [Abstract][Full Text] [Related]
10. CFD-based pesticide selection for a nozzle used in a six-rotor UAV in hover mode for tea spraying. Dong SJ; Gui QH; Zhu L; Zou XR; Zhou WX; Hou RY; Moray PJ; Yin CL Pest Manag Sci; 2023 May; 79(5):1963-1976. PubMed ID: 36680499 [TBL] [Abstract][Full Text] [Related]
11. Spray performance and control efficacy against pests in paddy rice by UAV-based pesticide application: effects of atomization, UAV configuration and flight velocity. Wongsuk S; Qi P; Wang C; Zeng A; Sun F; Yu F; Zhao X; Xiongkui H Pest Manag Sci; 2024 Apr; 80(4):2072-2084. PubMed ID: 38129096 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for Wang J; Ma C; Chen P; Yao W; Yan Y; Zeng T; Chen S; Lan Y Front Plant Sci; 2023; 14():1093912. PubMed ID: 36925752 [TBL] [Abstract][Full Text] [Related]
13. WSN-Assisted UAV Trajectory Adjustment for Pesticide Drift Control. Hu J; Wang T; Yang J; Lan Y; Lv S; Zhang Y Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987849 [TBL] [Abstract][Full Text] [Related]
14. Droplet Deposition Distribution Prediction Method for a Six-Rotor Plant Protection UAV Based on Inverse Distance Weighting. Wang B; Zhang Y; Wang C; Teng G Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236524 [TBL] [Abstract][Full Text] [Related]
15. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Wang C; Herbst A; Zeng A; Wongsuk S; Qiao B; Qi P; Bonds J; Overbeck V; Yang Y; Gao W; He X Sci Total Environ; 2021 Jul; 777():146181. PubMed ID: 33689892 [TBL] [Abstract][Full Text] [Related]
16. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Li L; Hu Z; Liu Q; Yi T; Han P; Zhang R; Pan L Front Plant Sci; 2022; 13():981494. PubMed ID: 36247584 [TBL] [Abstract][Full Text] [Related]
17. Design of Variable Spray System for Plant Protection UAV Based on CFD Simulation and Regression Analysis. Ni M; Wang H; Liu X; Liao Y; Fu L; Wu Q; Mu J; Chen X; Li J Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477600 [TBL] [Abstract][Full Text] [Related]
18. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Wang G; Lan Y; Qi H; Chen P; Hewitt A; Han Y Pest Manag Sci; 2019 Jun; 75(6):1546-1555. PubMed ID: 30620130 [TBL] [Abstract][Full Text] [Related]
19. Field evaluation of a six-rotor unmanned agricultural aerial sprayer: effects of application parameters on spray deposition and control efficacy against rice planthopper. Huang Z; Wang C; Wongsuk S; Qi P; Liu L; Qiao B; Zhong L; He X Pest Manag Sci; 2023 Nov; 79(11):4664-4678. PubMed ID: 37448099 [TBL] [Abstract][Full Text] [Related]
20. Productivity model and experiment of field crop spraying by plant protection unmanned aircraft. Qin W; Chen P; Wang B Front Plant Sci; 2023; 14():1168228. PubMed ID: 37152163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]