These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 39204879)
1. Comparative Analysis of TLS and UAV Sensors for Estimation of Grapevine Geometric Parameters. Ferreira L; Sousa JJ; Lourenço JM; Peres E; Morais R; Pádua L Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204879 [TBL] [Abstract][Full Text] [Related]
2. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR. Brede B; Lau A; Bartholomeus HM; Kooistra L Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29039755 [TBL] [Abstract][Full Text] [Related]
3. Comparing Nadir and Oblique Thermal Imagery in UAV-Based 3D Crop Water Stress Index Applications for Precision Viticulture with LiDAR Validation. Buunk T; Vélez S; Ariza-Sentís M; Valente J Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896718 [TBL] [Abstract][Full Text] [Related]
4. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Lu N; Zhou J; Han Z; Li D; Cao Q; Yao X; Tian Y; Zhu Y; Cao W; Cheng T Plant Methods; 2019; 15():17. PubMed ID: 30828356 [TBL] [Abstract][Full Text] [Related]
5. Estimation of cotton canopy parameters based on unmanned aerial vehicle (UAV) oblique photography. Wu J; Wen S; Lan Y; Yin X; Zhang J; Ge Y Plant Methods; 2022 Dec; 18(1):129. PubMed ID: 36482426 [TBL] [Abstract][Full Text] [Related]
6. Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests. Roşca S; Suomalainen J; Bartholomeus H; Herold M Interface Focus; 2018 Apr; 8(2):20170038. PubMed ID: 29503719 [TBL] [Abstract][Full Text] [Related]
7. Incorporation of Unmanned Aerial Vehicle (UAV) Point Cloud Products into Remote Sensing Evapotranspiration Models. Aboutalebi M; Torres-Rua AF; McKee M; Kustas WP; Nieto H; Alsina MM; White A; Prueger JH; McKee L; Alfieri J; Hipps L; Coopmans C; Dokoozlian N Remote Sens (Basel); 2020; 12(1):50. PubMed ID: 32355570 [TBL] [Abstract][Full Text] [Related]
8. Assessing Grapevine Biophysical Parameters From Unmanned Aerial Vehicles Hyperspectral Imagery. Matese A; Di Gennaro SF; Orlandi G; Gatti M; Poni S Front Plant Sci; 2022; 13():898722. PubMed ID: 35769294 [TBL] [Abstract][Full Text] [Related]
9. High Throughput Field Phenotyping for Plant Height Using UAV-Based RGB Imagery in Wheat Breeding Lines: Feasibility and Validation. Volpato L; Pinto F; González-Pérez L; Thompson IG; Borém A; Reynolds M; Gérard B; Molero G; Rodrigues FA Front Plant Sci; 2021; 12():591587. PubMed ID: 33664755 [TBL] [Abstract][Full Text] [Related]
10. Surface Monitoring of an MSW Landfill Based on Linear and Angular Measurements, TLS, and LIDAR UAV. Pasternak G; Zaczek-Peplinska J; Pasternak K; Jóźwiak J; Pasik M; Koda E; Vaverková MD Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850445 [TBL] [Abstract][Full Text] [Related]
11. Feature Analysis of Scanning Point Cloud of Structure and Research on Hole Repair Technology Considering Space-Ground Multi-Source 3D Data Acquisition. Pu X; Gan S; Yuan X; Li R Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559995 [TBL] [Abstract][Full Text] [Related]
12. Using Unmanned Aerial Vehicle-Based Multispectral Image Data to Monitor the Growth of Intercropping Crops in Tea Plantation. Shi Y; Gao Y; Wang Y; Luo D; Chen S; Ding Z; Fan K Front Plant Sci; 2022; 13():820585. PubMed ID: 35283919 [TBL] [Abstract][Full Text] [Related]
13. Grape Cluster Detection Using UAV Photogrammetric Point Clouds as a Low-Cost Tool for Yield Forecasting in Vineyards. Torres-Sánchez J; Mesas-Carrascosa FJ; Santesteban LG; Jiménez-Brenes FM; Oneka O; Villa-Llop A; Loidi M; López-Granados F Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33925169 [TBL] [Abstract][Full Text] [Related]
14. UAV-based individual plant detection and geometric parameter extraction in vineyards. Cantürk M; Zabawa L; Pavlic D; Dreier A; Klingbeil L; Kuhlmann H Front Plant Sci; 2023; 14():1244384. PubMed ID: 38034574 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of novel precision viticulture tool for canopy biomass estimation and missing plant detection based on 2.5D and 3D approaches using RGB images acquired by UAV platform. Di Gennaro SF; Matese A Plant Methods; 2020; 16():91. PubMed ID: 32636922 [TBL] [Abstract][Full Text] [Related]
16. Designing and Testing a UAV Mapping System for Agricultural Field Surveying. Christiansen MP; Laursen MS; Jørgensen RN; Skovsen S; Gislum R Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168783 [TBL] [Abstract][Full Text] [Related]
17. Extraction of Moso Bamboo Parameters Based on the Combination of ALS and TLS Point Cloud Data. Fan S; Jing S; Xu W; Wu B; Li M; Jing H Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000814 [TBL] [Abstract][Full Text] [Related]
18. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates. Madec S; Baret F; de Solan B; Thomas S; Dutartre D; Jezequel S; Hemmerlé M; Colombeau G; Comar A Front Plant Sci; 2017; 8():2002. PubMed ID: 29230229 [TBL] [Abstract][Full Text] [Related]
19. Assessment of DSM Based on Radiometric Transformation of UAV Data. Chaudhry MH; Ahmad A; Gulzar Q; Farid MS; Shahabi H; Al-Ansari N Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33673425 [TBL] [Abstract][Full Text] [Related]
20. Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras. Cen H; Wan L; Zhu J; Li Y; Li X; Zhu Y; Weng H; Wu W; Yin W; Xu C; Bao Y; Feng L; Shou J; He Y Plant Methods; 2019; 15():32. PubMed ID: 30972143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]