These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 39204885)
1. Using Flexible-Printed Piezoelectric Sensor Arrays to Measure Plantar Pressure during Walking for Sarcopenia Screening. Han S; Xiao Q; Liang Y; Chen Y; Yan F; Chen H; Yue J; Tian X; Xiong Y Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204885 [TBL] [Abstract][Full Text] [Related]
2. Exploration of a machine learning approach for diagnosing sarcopenia among Chinese community-dwelling older adults using sEMG-based data. Li N; Ou J; He H; He J; Zhang L; Peng Z; Zhong J; Jiang N J Neuroeng Rehabil; 2024 May; 21(1):69. PubMed ID: 38725065 [TBL] [Abstract][Full Text] [Related]
3. Flexible sensor matrix film-based wearable plantar pressure force measurement and analysis system. Zhao S; Liu R; Fei C; Zia AW; Jing L PLoS One; 2020; 15(8):e0237090. PubMed ID: 32764796 [TBL] [Abstract][Full Text] [Related]
4. A plantar wearable pressure sensor based on hybrid lead zirconate-titanate/microfibrillated cellulose piezoelectric composite films for human health monitoring. Guan Y; Bai M; Li Q; Li W; Liu G; Liu C; Chen Y; Lin Y; Hui Y; Wei R Lab Chip; 2022 Jun; 22(12):2376-2391. PubMed ID: 35635092 [TBL] [Abstract][Full Text] [Related]
5. Integrated Fibrous Iontronic Pressure Sensors with High Sensitivity and Reliability for Human Plantar Pressure and Gait Analysis. Li W; Zou K; Guo J; Zhang C; Feng J; You J; Cheng G; Zhou Q; Kong M; Li G; Guo CF; Yang J ACS Nano; 2024 Jun; 18(22):14672-14684. PubMed ID: 38760182 [TBL] [Abstract][Full Text] [Related]
6. Identifying changes in dynamic plantar pressure associated with radiological knee osteoarthritis based on machine learning and wearable devices. Li G; Li S; Xie J; Zhang Z; Zou J; Yang C; He L; Zeng Q; Shu L; Huang G J Neuroeng Rehabil; 2024 Apr; 21(1):45. PubMed ID: 38570841 [TBL] [Abstract][Full Text] [Related]
7. Influence of obesity and sarcopenic obesity on plantar pressure of postmenopausal women. Monteiro M; Gabriel R; Aranha J; Neves e Castro M; Sousa M; Moreira M Clin Biomech (Bristol, Avon); 2010 Jun; 25(5):461-7. PubMed ID: 20176421 [TBL] [Abstract][Full Text] [Related]
8. Clinical Validation of a Wearable Piezoelectric Blood-Pressure Sensor for Continuous Health Monitoring. Min S; Kim DH; Joe DJ; Kim BW; Jung YH; Lee JH; Lee BY; Doh I; An J; Youn YN; Joung B; Yoo CD; Ahn HS; Lee KJ Adv Mater; 2023 Jun; 35(26):e2301627. PubMed ID: 36960816 [TBL] [Abstract][Full Text] [Related]
9. Combined application of FBG and PZT sensors for plantar pressure monitoring at low and high speed walking. Suresh R; Bhalla S; Singh C; Kaur N; Hao J; Anand S Technol Health Care; 2015; 23(1):47-61. PubMed ID: 25351277 [TBL] [Abstract][Full Text] [Related]
10. Capacitive-piezoresistive hybrid flexible pressure sensor based on conductive micropillar arrays with high sensitivity over a wide dynamic range. Shen Z; Yang C; Yao C; Liu Z; Huang X; Liu Z; Mo J; Xu H; He G; Tao J; Xie X; Hang T; Chen HJ; Liu F Mater Horiz; 2023 Feb; 10(2):499-511. PubMed ID: 36412496 [TBL] [Abstract][Full Text] [Related]
11. Plantar pressure sensors indicate women to have a significantly higher peak pressure on the hallux, toes, forefoot, and medial of the foot compared to men. Yamamoto T; Hoshino Y; Kanzaki N; Nukuto K; Yamashita T; Ibaraki K; Nagamune K; Nagai K; Araki D; Matsushita T; Kuroda R J Foot Ankle Res; 2020 Jul; 13(1):40. PubMed ID: 32611444 [TBL] [Abstract][Full Text] [Related]
12. Design of a Plantar Pressure Insole Measuring System Based on Modular Photoelectric Pressure Sensor Unit. Ren B; Liu J Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34072553 [TBL] [Abstract][Full Text] [Related]
13. Developing excellent plantar pressure sensors for monitoring human motions by using highly compressible and resilient PMMA conductive iongels. Wang H; Lin G; Lin Y; Cui Y; Chen G; Peng Z J Colloid Interface Sci; 2024 Aug; 668():142-153. PubMed ID: 38669992 [TBL] [Abstract][Full Text] [Related]
14. Game-Based Assessment of Peripheral Neuropathy Combining Sensor-Equipped Insoles, Video Games, and AI: Proof-of-Concept Study. Ming A; Clemens V; Lorek E; Wall J; Alhajjar A; Galazky I; Baum AK; Li Y; Li M; Stober S; Mertens ND; Mertens PR J Med Internet Res; 2024 Oct; 26():e52323. PubMed ID: 39353184 [TBL] [Abstract][Full Text] [Related]
15. Identification of Patients with Sarcopenia Using Gait Parameters Based on Inertial Sensors. Kim JK; Bae MN; Lee KB; Hong SG Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33806525 [TBL] [Abstract][Full Text] [Related]
17. Estimation of Various Walking Intensities Based on Wearable Plantar Pressure Sensors Using Artificial Neural Networks. Chen HC; Sunardi ; Liau BY; Lin CY; Akbari VBH; Lung CW; Jan YK Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640838 [TBL] [Abstract][Full Text] [Related]
18. A Systematic Approach to the Design and Characterization of A Smart Insole for Detecting Vertical Ground Reaction Force (vGRF) in Gait Analysis. Tahir AM; Chowdhury MEH; Khandakar A; Al-Hamouz S; Abdalla M; Awadallah S; Reaz MBI; Al-Emadi N Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053914 [TBL] [Abstract][Full Text] [Related]
19. Multilevel Microstructured Flexible Pressure Sensors with Ultrahigh Sensitivity and Ultrawide Pressure Range for Versatile Electronic Skins. Tang X; Wu C; Gan L; Zhang T; Zhou T; Huang J; Wang H; Xie C; Zeng D Small; 2019 Mar; 15(10):e1804559. PubMed ID: 30714294 [TBL] [Abstract][Full Text] [Related]
20. Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running. Matijevich ES; Scott LR; Volgyesi P; Derry KH; Zelik KE Hum Mov Sci; 2020 Dec; 74():102690. PubMed ID: 33132194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]