These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 392049)

  • 21. Multiplicity of peptide permeases in Candida albicans: evidence from novel chromophoric peptides.
    McCarthy PJ; Nisbet LJ; Boehm JC; Kingsbury WD
    J Bacteriol; 1985 Jun; 162(3):1024-9. PubMed ID: 3888953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of aeration and metabolic inhibitors on resistance to amphotericin in starved cultures of Candida albicans.
    Gale EF; Johnson AM; Kerridge D
    J Gen Microbiol; 1977 Mar; 99(1):77-84. PubMed ID: 325178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methionine transport by mycelia of Fusarium oxysporum f. sp. lycopersici.
    Barran LR
    Can J Microbiol; 1981 Aug; 27(8):743-7. PubMed ID: 7296408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intestinal handling of two tetrapeptides by rodent small intestine in vitro.
    Burston D; Taylor E; Matthews DM
    Biochim Biophys Acta; 1979 May; 553(1):175-8. PubMed ID: 454585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A family of oligopeptide transporters is required for growth of Candida albicans on proteins.
    Reuss O; Morschhäuser J
    Mol Microbiol; 2006 May; 60(3):795-812. PubMed ID: 16629678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anticandidal activity of pyrimidine-peptide conjugates.
    Ti JS; Steinfeld AS; Naider F; Gulumoglu A; Lewis SV; Becker JM
    J Med Chem; 1980 Aug; 23(8):913-8. PubMed ID: 6995613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Candidacidal mechanism of a Leu/Lys-rich α-helical amphipathic model antimicrobial peptide and its diastereomer composed of D,L-amino acids.
    Wang P; Nan YH; Shin SY
    J Pept Sci; 2010 Nov; 16(11):601-6. PubMed ID: 20665599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uptake of T-2307, a novel arylamidine, in Candida albicans.
    Nishikawa H; Yamada E; Shibata T; Uchihashi S; Fan H; Hayakawa H; Nomura N; Mitsuyama J
    J Antimicrob Chemother; 2010 Aug; 65(8):1681-7. PubMed ID: 20513704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Palladium(II) complex as a sequence-specific peptidase: hydrolytic cleavage under mild conditions of X-Pro peptide bonds in X-Pro-Met and X-Pro-His segments.
    Milović NM; Kostić NM
    J Am Chem Soc; 2003 Jan; 125(3):781-8. PubMed ID: 12526679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The interaction of amphotericin B methyl ester with protoplasts of Candida albicans.
    Kerridge D; Koh TY; Johnson AM
    J Gen Microbiol; 1976 Sep; 96(1):117-23. PubMed ID: 789813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation of a mycelial mutant of Candida albicans.
    Cannon RD
    J Gen Microbiol; 1986 Aug; 132(8):2405-7. PubMed ID: 3540202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transition-metal complexes as enzyme-like reagents for protein cleavage: complex cis-[Pt(en)(H2O)2]2+ as a new methionine-specific protease.
    Milović NM; Dutca LM; Kostić NM
    Chemistry; 2003 Oct; 9(20):5097-106. PubMed ID: 14562327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel anti-inflammatory undecapeptides that contain anisolyated glutamic acid derivatives.
    Thomas HA; Ling N; Wei ET; Berree F; Cobas A; Rapoport H
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1321-6. PubMed ID: 7903386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of alpha-thiophenylglycine peptides. Novel peptide substrates useful in the study of microbial peptide transport.
    Kingsbury WD; Boehm JC
    Int J Pept Protein Res; 1986 Jun; 27(6):659-65. PubMed ID: 3531054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenotypic resistance to amphotericin B in Candida albicans: relationship to glucan metabolism.
    Notario V; Gale EF; Kerridge D; Wayman F
    J Gen Microbiol; 1982 Apr; 128(4):761-77. PubMed ID: 6126520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Why choline supplementation did not enhance phosphatidylcholine level in Candida albicans.
    Trivedi A; Dudani AK; Prasad R
    Biochem Int; 1983 Jan; 6(1):119-28. PubMed ID: 6089802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methionine peptides as potential food supplements: efficacy and susceptibility to Maillard browning.
    Baker DH; Bafundo KW; Boebel KP; Czarnecki GL; Halpin KM
    J Nutr; 1984 Feb; 114(2):292-7. PubMed ID: 6693991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of action of nikkomycin and the peptide transport system of Candida albicans.
    McCarthy PJ; Troke PF; Gull K
    J Gen Microbiol; 1985 Apr; 131(4):775-80. PubMed ID: 3886837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrophobic polyoxins are resistant to intracellular degradation in Candida albicans.
    Smith HA; Shenbagamurthi P; Naider F; Kundu B; Becker JM
    Antimicrob Agents Chemother; 1986 Jan; 29(1):33-9. PubMed ID: 3524423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ergosterol-enhanced recovery of mutagen treated Candida albicans.
    Sarachek A
    Z Allg Mikrobiol; 1977; 17(6):481-5. PubMed ID: 337692
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.