These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 39204981)

  • 1. A Symmetrical Quasi-Synchronous Step-Transition Folded Waveguide Slow Wave Structure for 650 GHz Traveling Wave Tubes.
    Xu D; He T; Zheng Y; Lu Z; Gong H; Wang Z; Duan Z; Wang S
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Staggered Double-Segmented Grating Slow-Wave Structure for 340 GHz Traveling-Wave Tube.
    Wang Z; Zhu J; Lu Z; Duan J; Chen H; Wang S; Wang Z; Gong H; Gong Y
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A piecewise sine waveguide for terahertz traveling wave tube.
    Zhang L; Jiang Y; Lei W; Hu P; Guo J; Song R; Tang X; Ma G; Chen H; Wei Y
    Sci Rep; 2022 Jun; 12(1):10449. PubMed ID: 35729233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Staggered Vane-Shaped Slot-Line Slow-Wave Structure for W-Band Dual-Sheet Electron-Beam-Traveling Wave Tubes.
    Wang Y; Guo J; Dong Y; Xu D; Zheng Y; Lu Z; Wang Z; Wang S
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A G-Band Broadband Continuous Wave Traveling Wave Tube for Wireless Communications.
    Feng Y; Bian X; Song B; Li Y; Pan P; Feng J
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of a 263-GHz Traveling Wave Tube for Electron Paramagnetic Resonance Spectroscopy.
    Pan P; Zheng Y; Li Y; Song X; Feng Z; Feng J; Britt RD; Luhmann NC
    IEEE Trans Electron Devices; 2023 Nov; 70(11):5897-5902. PubMed ID: 39130611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-mode and double-beam staggered double-vane traveling-wave tube with high-power and broadband at terahertz band.
    Wang W; Zhang Z; Wang P; Zhao Y; Zhang F; Ruan C
    Sci Rep; 2022 Jul; 12(1):12012. PubMed ID: 35835793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple-beam and double-mode staggered double vane travelling wave tube with ultra-wide band.
    Zhang Z; Ruan C; Fahad AK; Zhang C; Su Y; Wang P; He W
    Sci Rep; 2020 Nov; 10(1):20159. PubMed ID: 33214669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-power 140-GHz quasioptical gyrotron traveling-wave amplifier.
    Sirigiri JR; Shapiro MA; Temkin RJ
    Phys Rev Lett; 2003 Jun; 90(25 Pt 1):258302. PubMed ID: 12857176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and verification of a backward wave oscillation suppression circuit for the Ka-band gyrotron travelling-wave tube.
    Ma Y; Liu G; Lei C; Cao Y; Wang W; Wang Y; Yao Y; Jiang W; Wang J; Luo Y
    Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37823769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier.
    Joye CD; Shapiro MA; Sirigiri JR; Temkin RJ
    IEEE Trans Electron Devices; 2009 May; 56(5):818-827. PubMed ID: 20054451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operation of a 140 GHz Gyro-amplifier using a Dielectric-loaded, Sever-less Confocal Waveguide.
    Soane AV; Shapiro MA; Jawla S; Temkin RJ
    IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc; 2017 Oct; 45(10):2835-2840. PubMed ID: 29033474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-power UTC-photodiodes for an optically pumped subharmonic terahertz receiver.
    Makhlouf S; Martinez-Gil J; Grzeslo M; Moro-Melgar D; Cojocari O; Stöhr A
    Opt Express; 2022 Nov; 30(24):43798-43814. PubMed ID: 36523071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon-based traveling-wave photodetector array (Si-TWPDA) with parallel optical feeding.
    Luo X; Song J; Tu X; Fang Q; Jia L; Huang Y; Liow TY; Yu M; Lo GQ
    Opt Express; 2014 Aug; 22(17):20020-6. PubMed ID: 25321212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide.
    Bratman VL; Cross AW; Denisov GG; He W; Phelps AD; Ronald K; Samsonov SV; Whyte CG; Young AR
    Phys Rev Lett; 2000 Mar; 84(12):2746-9. PubMed ID: 11017315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic-band-gap traveling-wave gyrotron amplifier.
    Nanni EA; Lewis SM; Shapiro MA; Griffin RG; Temkin RJ
    Phys Rev Lett; 2013 Dec; 111(23):235101. PubMed ID: 24476286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Millimeter-Wave Broadband Multi-Mode Substrate-Integrated Gap Waveguide Traveling-Wave Antenna with Orbit Angular Momentum.
    Lin QH; Hou D; Wang L; Chen P; Luo Z
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic-band-gap gyrotron amplifier with picosecond pulses.
    Nanni EA; Jawla S; Lewis SM; Shapiro MA; Temkin RJ
    Appl Phys Lett; 2017 Dec; 111(23):233504. PubMed ID: 29249833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uni-traveling-carrier variable confinement waveguide photodiodes.
    Klamkin J; Madison SM; Oakley DC; Napoleone A; O'Donnell FJ; Sheehan M; Missaggia LJ; Caissie JM; Plant JJ; Juodawlkis PW
    Opt Express; 2011 May; 19(11):10199-205. PubMed ID: 21643278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and microwave test of an ultrawideband input/output structure for sheet beam travelling wave tubes.
    Shu G; Wang J; Liu G; Yang L; Luo Y; Wang S
    Rev Sci Instrum; 2015 Jun; 86(6):064703. PubMed ID: 26133854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.