These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 39205067)
1. One-Channel Wearable Mental Stress State Monitoring System. Abdul Kader L; Al-Shargie F; Tariq U; Al-Nashash H Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205067 [TBL] [Abstract][Full Text] [Related]
2. Objective stress monitoring based on wearable sensors in everyday settings. Han HJ; Labbaf S; Borelli JL; Dutt N; Rahmani AM J Med Eng Technol; 2020 May; 44(4):177-189. PubMed ID: 32589065 [TBL] [Abstract][Full Text] [Related]
3. Wearable Ring-Shaped Biomedical Device for Physiological Monitoring through Finger-Based Acquisition of Electrocardiographic, Photoplethysmographic, and Galvanic Skin Response Signals: Design and Preliminary Measurements. Volpes G; Valenti S; Genova G; Barà C; Parisi A; Faes L; Busacca A; Pernice R Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667198 [TBL] [Abstract][Full Text] [Related]
4. A machine-learning approach for stress detection using wearable sensors in free-living environments. Abd Al-Alim M; Mubarak R; M Salem N; Sadek I Comput Biol Med; 2024 Sep; 179():108918. PubMed ID: 39029434 [TBL] [Abstract][Full Text] [Related]
5. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study. Can YS; Chalabianloo N; Ekiz D; Ersoy C Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003456 [TBL] [Abstract][Full Text] [Related]
6. Deep learning-based stress detection for daily life use using single-channel EEG and GSR in a virtual reality interview paradigm. Kim HG; Song S; Cho BH; Jang DP PLoS One; 2024; 19(7):e0305864. PubMed ID: 38959272 [TBL] [Abstract][Full Text] [Related]
7. A Flexible Wearable Device for Measurement of Cardiac, Electrodermal, and Motion Parameters in Mental Healthcare Applications. Rosa BMG; Yang GZ IEEE J Biomed Health Inform; 2019 Nov; 23(6):2276-2285. PubMed ID: 31478880 [TBL] [Abstract][Full Text] [Related]
8. A Novel Wearable EEG and ECG Recording System for Stress Assessment. Ahn JW; Ku Y; Kim HC Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31035399 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of an Integrated System of Wearable Physiological Sensors for Stress Monitoring in Working Environments by Using Biological Markers. Betti S; Lova RM; Rovini E; Acerbi G; Santarelli L; Cabiati M; Del Ry S; Cavallo F IEEE Trans Biomed Eng; 2018 Aug; 65(8):1748-1758. PubMed ID: 29989933 [TBL] [Abstract][Full Text] [Related]
10. Toward Dynamically Adaptive Simulation: Multimodal Classification of User Expertise Using Wearable Devices. Ross K; Sarkar P; Rodenburg D; Ruberto A; Hungler P; Szulewski A; Howes D; Etemad A Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31581563 [TBL] [Abstract][Full Text] [Related]
11. The Effect of Stress on a Personal Identification System Based on Electroencephalographic Signals. Abdel-Ghaffar EA; Salama M Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000946 [TBL] [Abstract][Full Text] [Related]
13. A Wearable In-Ear EEG Device for Emotion Monitoring. Athavipach C; Pan-Ngum S; Israsena P Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31533329 [TBL] [Abstract][Full Text] [Related]
14. Comparative Evaluation of the Autonomic Response to Cognitive and Sensory Stimulations through Wearable Sensors. Tonacci A; Billeci L; Burrai E; Sansone F; Conte R Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31717848 [TBL] [Abstract][Full Text] [Related]
15. Objective detection of chronic stress using physiological parameters. Al Abdi RM; Alhitary AE; Abdul Hay EW; Al-Bashir AK Med Biol Eng Comput; 2018 Dec; 56(12):2273-2286. PubMed ID: 29911251 [TBL] [Abstract][Full Text] [Related]
16. Classification of Perceived Human Stress using Physiological Signals. Arsalan A; Majid M; Anwar SM; Bagci U Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1247-1250. PubMed ID: 31946118 [TBL] [Abstract][Full Text] [Related]
17. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices. Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895 [TBL] [Abstract][Full Text] [Related]
18. Eliminating Individual Bias to Improve Stress Detection from Multimodal Physiological Data. Das D; Datta S; Bhattacharjee T; Choudhury AD; Pal A Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5753-5758. PubMed ID: 30441643 [TBL] [Abstract][Full Text] [Related]
19. Highly wearable galvanic skin response sensor using flexible and conductive polymer foam. Kim J; Kwon S; Seo S; Park K Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6631-4. PubMed ID: 25571516 [TBL] [Abstract][Full Text] [Related]
20. Signal quality and patient experience with wearable devices for epilepsy management. Nasseri M; Nurse E; Glasstetter M; Böttcher S; Gregg NM; Laks Nandakumar A; Joseph B; Pal Attia T; Viana PF; Bruno E; Biondi A; Cook M; Worrell GA; Schulze-Bonhage A; Dümpelmann M; Freestone DR; Richardson MP; Brinkmann BH Epilepsia; 2020 Nov; 61 Suppl 1():S25-S35. PubMed ID: 32497269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]