These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 39205124)
1. Metamaterial Broadband Absorber Induced by Synergistic Regulation of Temperature and Electric Field and Its Optical Switching Application. Yang R; Liu Y; Wang X Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205124 [TBL] [Abstract][Full Text] [Related]
2. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption. Zhu H; Zhang Y; Ye L; Li Y; Xu Y; Xu R Opt Express; 2020 Dec; 28(26):38626-38637. PubMed ID: 33379429 [TBL] [Abstract][Full Text] [Related]
3. Tunable Dual-Broadband Terahertz Absorber with Vanadium Dioxide Metamaterial. Feng H; Zhang Z; Zhang J; Fang D; Wang J; Liu C; Wu T; Wang G; Wang L; Ran L; Gao Y Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630953 [TBL] [Abstract][Full Text] [Related]
4. Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber. Liu H; Wang ZH; Li L; Fan YX; Tao ZY Sci Rep; 2019 Apr; 9(1):5751. PubMed ID: 30962484 [TBL] [Abstract][Full Text] [Related]
5. Ultra-Broadband Tunable Terahertz Metamaterial Absorber Based on Double-Layer Vanadium Dioxide Square Ring Arrays. Zhang P; Chen G; Hou Z; Zhang Y; Shen J; Li C; Zhao M; Gao Z; Li Z; Tang T Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630136 [TBL] [Abstract][Full Text] [Related]
6. Tunable Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide and Graphene. Zheng L; Feng R; Shi H; Li X Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763877 [TBL] [Abstract][Full Text] [Related]
7. Photocontrolled ultra-broadband metamaterial absorber around the terahertz regime. Wu G; Li C; Wang D; Gao S; Guo H; Chen W; Guo S; Xiong J; Che Y Phys Chem Chem Phys; 2024 Sep; 26(35):23144-23151. PubMed ID: 39189163 [TBL] [Abstract][Full Text] [Related]
8. Tunable Broadband Terahertz Waveband Absorbers Based on Fractal Technology of Graphene Metamaterial. Xie T; Chen D; Yang H; Xu Y; Zhang Z; Yang J Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33498504 [TBL] [Abstract][Full Text] [Related]
9. A Polarization-Insensitive and Wide-Angle Terahertz Absorber with Ring-Porous Patterned Graphene Metasurface. Shen H; Liu F; Liu C; Zeng D; Guo B; Wei Z; Wang F; Tan C; Huang X; Meng H Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32707727 [TBL] [Abstract][Full Text] [Related]
10. Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device. Li H; Xu W; Cui Q; Wang Y; Yu J Opt Express; 2020 Dec; 28(26):40060-40074. PubMed ID: 33379540 [TBL] [Abstract][Full Text] [Related]
11. Tunable broadband all-silicon terahertz absorber based on a simple metamaterial structure. Lang T; Shen T; Wang G; Shen C Appl Opt; 2020 Jul; 59(21):6265-6270. PubMed ID: 32749287 [TBL] [Abstract][Full Text] [Related]
12. A Non-Volatile Tunable Terahertz Metamaterial Absorber Using Graphene Floating Gate. Bai J; Shen W; Shi J; Xu W; Zhang S; Chang S Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33801056 [TBL] [Abstract][Full Text] [Related]
14. All-Silicon Polarization-Insensitive Metamaterial Absorber in the Terahertz Range. Xu Z; Li Y; Han B; Wang Y; Yuan Q; Li Y; He W; Hao J; Wu L; Yao J Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730908 [TBL] [Abstract][Full Text] [Related]
15. A dual functional tunable terahertz metamaterial absorber based on vanadium dioxide. Niu J; Hui Q; Mo W; Yao Q; Gong H; Tian R; Zhu A Phys Chem Chem Phys; 2024 Apr; 26(14):10633-10640. PubMed ID: 38511282 [TBL] [Abstract][Full Text] [Related]
16. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime. Huang X; He W; Yang F; Ran J; Gao B; Zhang WL Opt Express; 2018 Oct; 26(20):25558-25566. PubMed ID: 30469656 [TBL] [Abstract][Full Text] [Related]
17. Polarization-insensitive broadband terahertz metamaterial absorber based on hybrid structures. Lu Y; Li J; Zhang S; Sun J; Yao JQ Appl Opt; 2018 Jul; 57(21):6269-6275. PubMed ID: 30118008 [TBL] [Abstract][Full Text] [Related]