These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 39205621)

  • 1. Long-term Durability of Seawater Electrolysis for Hydrogen: From Catalysts to Systems.
    Liu Y; Wang Y; Fornasiero P; Tian G; Strasser P; Yang XY
    Angew Chem Int Ed Engl; 2024 Nov; 63(47):e202412087. PubMed ID: 39205621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced membrane-based electrode engineering toward efficient and durable water electrolysis and cost-effective seawater electrolysis in membrane electrolyzers.
    Tang J; Su C; Shao Z
    Exploration (Beijing); 2024 Feb; 4(1):20220112. PubMed ID: 38854490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Materials Design and System Innovation for Direct and Indirect Seawater Electrolysis.
    He W; Li X; Tang C; Zhou S; Lu X; Li W; Li X; Zeng X; Dong P; Zhang Y; Zhang Q
    ACS Nano; 2023 Nov; 17(22):22227-22239. PubMed ID: 37965727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises.
    Liu J; Duan S; Shi H; Wang T; Yang X; Huang Y; Wu G; Li Q
    Angew Chem Int Ed Engl; 2022 Nov; 61(45):e202210753. PubMed ID: 35997542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging materials and technologies for electrocatalytic seawater splitting.
    Jin H; Xu J; Liu H; Shen H; Yu H; Jaroniec M; Zheng Y; Qiao SZ
    Sci Adv; 2023 Oct; 9(42):eadi7755. PubMed ID: 37851797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in Anode Stability Improvement for Seawater Electrolysis to Produce Hydrogen.
    Zhang S; Xu W; Chen H; Yang Q; Liu H; Bao S; Tian Z; Slavcheva E; Lu Z
    Adv Mater; 2024 Sep; 36(37):e2311322. PubMed ID: 38299450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Multilevel Collaborative Catalytic Interfaces with Multifunctional Iron Sites Enabling High-Performance Real Seawater Splitting.
    Zhang F; Liu Y; Yu F; Pang H; Zhou X; Li D; Ma W; Zhou Q; Mo Y; Zhou H
    ACS Nano; 2023 Jan; ():. PubMed ID: 36594437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-entropy NiFeCoV disulfides for enhanced alkaline water/seawater electrolysis.
    Feng C; Chen M; Zhou Y; Xie Z; Li X; Xiaokaiti P; Kansha Y; Abudula A; Guan G
    J Colloid Interface Sci; 2023 Sep; 645():724-734. PubMed ID: 37172482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design Strategy of Corrosion-Resistant Electrodes for Seawater Electrolysis.
    Zhao L; Li X; Yu J; Zhou W
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upcycling of Spent LiFePO
    Li Z; Li M; Chen Y; Ye X; Liu M; Lee LYS
    Angew Chem Int Ed Engl; 2024 Oct; 63(44):e202410396. PubMed ID: 39115462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ag Nanoparticle-Induced Surface Chloride Immobilization Strategy Enables Stable Seawater Electrolysis.
    Xu W; Wang Z; Liu P; Tang X; Zhang S; Chen H; Yang Q; Chen X; Tian Z; Dai S; Chen L; Lu Z
    Adv Mater; 2024 Jan; 36(2):e2306062. PubMed ID: 37907201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green Hydrogen Production by Low-Temperature Membrane-Engineered Water Electrolyzers, and Regenerative Fuel Cells.
    Bodard A; Chen Z; ELJarray O; Zhang G
    Small Methods; 2024 Sep; ():e2400574. PubMed ID: 39285832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in hydrogen production from electrocatalytic seawater splitting.
    Wang C; Shang H; Jin L; Xu H; Du Y
    Nanoscale; 2021 May; 13(17):7897-7912. PubMed ID: 33881101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional Design of Catalysts for Seawater Electrolysis for Hydrogen Production.
    Cui C; Zhang H; Wang D; Song J; Yang Y
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting.
    Wang H; Chen L; Tan L; Liu X; Wen Y; Hou W; Zhan T
    J Colloid Interface Sci; 2022 May; 613():349-358. PubMed ID: 35042032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A membrane-based seawater electrolyser for hydrogen generation.
    Xie H; Zhao Z; Liu T; Wu Y; Lan C; Jiang W; Zhu L; Wang Y; Yang D; Shao Z
    Nature; 2022 Dec; 612(7941):673-678. PubMed ID: 36450987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Corrosion Resistance of NiFe-Layered Double Hydroxide Catalyst for Stable Seawater Electrolysis Promoted by Phosphate Intercalation.
    Zhang B; Liu S; Zhang S; Cao Y; Wang H; Han C; Sun J
    Small; 2022 Nov; 18(45):e2203852. PubMed ID: 36192167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bipolar Membrane Seawater Splitting for Hydrogen Production: A Review.
    Adisasmito S; Khoiruddin K; Sutrisna PD; Wenten IG; Siagian UWR
    ACS Omega; 2024 Apr; 9(13):14704-14727. PubMed ID: 38585051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels.
    Kuang Y; Kenney MJ; Meng Y; Hung WH; Liu Y; Huang JE; Prasanna R; Li P; Li Y; Wang L; Lin MC; McGehee MD; Sun X; Dai H
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6624-6629. PubMed ID: 30886092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting.
    Jiang WJ; Tang T; Zhang Y; Hu JS
    Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.