These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. BAF60a Deficiency in Vascular Smooth Muscle Cells Prevents Abdominal Aortic Aneurysm by Reducing Inflammation and Extracellular Matrix Degradation. Chang Z; Zhao G; Zhao Y; Lu H; Xiong W; Liang W; Sun J; Wang H; Zhu T; Rom O; Guo Y; Fan Y; Chang L; Yang B; Garcia-Barrio MT; Lin JD; Chen YE; Zhang J Arterioscler Thromb Vasc Biol; 2020 Oct; 40(10):2494-2507. PubMed ID: 32787523 [TBL] [Abstract][Full Text] [Related]
5. Genetic Ablation of MicroRNA-33 Attenuates Inflammation and Abdominal Aortic Aneurysm Formation via Several Anti-Inflammatory Pathways. Nakao T; Horie T; Baba O; Nishiga M; Nishino T; Izuhara M; Kuwabara Y; Nishi H; Usami S; Nakazeki F; Ide Y; Koyama S; Kimura M; Sowa N; Ohno S; Aoki H; Hasegawa K; Sakamoto K; Minatoya K; Kimura T; Ono K Arterioscler Thromb Vasc Biol; 2017 Nov; 37(11):2161-2170. PubMed ID: 28882868 [TBL] [Abstract][Full Text] [Related]
6. Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm. Cooper HA; Cicalese S; Preston KJ; Kawai T; Okuno K; Choi ET; Kasahara S; Uchida HA; Otaka N; Scalia R; Rizzo V; Eguchi S Cardiovasc Res; 2021 Feb; 117(3):971-982. PubMed ID: 32384150 [TBL] [Abstract][Full Text] [Related]
7. Spatiotemporal ATF3 Expression Determines VSMC Fate in Abdominal Aortic Aneurysm. Wen Y; Liu Y; Li Q; Tan J; Fu X; Liang Y; Tuo Y; Liu L; Zhou X; LiuFu D; Fan X; Chen C; Chen Z; Wang Z; Fan S; Liu R; Pan L; Zhang Y; Tang WH Circ Res; 2024 May; 134(11):1495-1511. PubMed ID: 38686580 [TBL] [Abstract][Full Text] [Related]
8. Enhanced endoplasmic reticulum and mitochondrial stress in abdominal aortic aneurysm. Navas-Madroñal M; Rodriguez C; Kassan M; Fité J; Escudero JR; Cañes L; Martínez-González J; Camacho M; Galán M Clin Sci (Lond); 2019 Jul; 133(13):1421-1438. PubMed ID: 31239294 [TBL] [Abstract][Full Text] [Related]
9. Targeting vascular smooth muscle cell dysfunction with xanthine derivative KMUP-3 inhibits abdominal aortic aneurysm in mice. Lai CH; Chang CW; Lee FT; Kuo CH; Hsu JH; Liu CP; Wu HL; Yeh JL Atherosclerosis; 2020 Mar; 297():16-24. PubMed ID: 32059119 [TBL] [Abstract][Full Text] [Related]
10. Adenosine kinase inhibition protects mice from abdominal aortic aneurysm via epigenetic modulation of VSMC inflammation. Xu J; Liu Z; Yang Q; Ma Q; Zhou Y; Cai Y; Zhao D; Zhao G; Lu T; Ouyang K; Hong M; Kim HW; Shi H; Zhang J; Fulton D; Miller C; Malhotra R; Weintraub NL; Huo Y Cardiovasc Res; 2024 Sep; 120(10):1202-1217. PubMed ID: 38722818 [TBL] [Abstract][Full Text] [Related]
11. TGF-β (Transforming Growth Factor-β) Signaling Protects the Thoracic and Abdominal Aorta From Angiotensin II-Induced Pathology by Distinct Mechanisms. Angelov SN; Hu JH; Wei H; Airhart N; Shi M; Dichek DA Arterioscler Thromb Vasc Biol; 2017 Nov; 37(11):2102-2113. PubMed ID: 28729364 [TBL] [Abstract][Full Text] [Related]
12. Osteopontin may be a driver of abdominal aortic aneurysm formation. Wang SK; Green LA; Gutwein AR; Gupta AK; Babbey CM; Motaganahalli RL; Fajardo A; Murphy MP J Vasc Surg; 2018 Dec; 68(6S):22S-29S. PubMed ID: 29402664 [TBL] [Abstract][Full Text] [Related]
13. Altered IL-32 Signaling in Abdominal Aortic Aneurysm. Bengts S; Shamoun L; Kunath A; Appelgren D; Welander M; Björck M; Wanhainen A; Wågsäter D J Vasc Res; 2020; 57(4):236-244. PubMed ID: 32434199 [TBL] [Abstract][Full Text] [Related]
15. Receptor-interacting protein kinase 3 contributes to abdominal aortic aneurysms via smooth muscle cell necrosis and inflammation. Wang Q; Liu Z; Ren J; Morgan S; Assa C; Liu B Circ Res; 2015 Feb; 116(4):600-11. PubMed ID: 25563840 [TBL] [Abstract][Full Text] [Related]
16. Down-regulation of Fibulin-5 is associated with aortic dilation: role of inflammation and epigenetics. Orriols M; Varona S; Martí-Pàmies I; Galán M; Guadall A; Escudero JR; Martín-Ventura JL; Camacho M; Vila L; Martínez-González J; Rodríguez C Cardiovasc Res; 2016 Jun; 110(3):431-42. PubMed ID: 27089918 [TBL] [Abstract][Full Text] [Related]
18. Involvement of macrophage-derived exosomes in abdominal aortic aneurysms development. Wang Y; Jia L; Xie Y; Cai Z; Liu Z; Shen J; Lu Y; Wang Y; Su S; Ma Y; Xiang M Atherosclerosis; 2019 Oct; 289():64-72. PubMed ID: 31479773 [TBL] [Abstract][Full Text] [Related]
19. Ursolic acid prevents angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-knockout mice. Zhai M; Guo J; Ma H; Shi W; Jou D; Yan D; Liu T; Tao J; Duan J; Wang Y; Li S; Lv J; Li C; Lin J; Zhang C; Lin L Atherosclerosis; 2018 Apr; 271():128-135. PubMed ID: 29499360 [TBL] [Abstract][Full Text] [Related]
20. RANKL-mediated osteoclastogenic differentiation of macrophages in the abdominal aorta of angiotensin II-infused apolipoprotein E knockout mice. Tanaka T; Kelly M; Takei Y; Yamanouchi D J Vasc Surg; 2018 Dec; 68(6S):48S-59S.e1. PubMed ID: 29685509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]