These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 39206632)
21. A systematic study of modulation of ADAM-mediated ectodomain shedding by site-specific O-glycosylation. Goth CK; Halim A; Khetarpal SA; Rader DJ; Clausen H; Schjoldager KT Proc Natl Acad Sci U S A; 2015 Nov; 112(47):14623-8. PubMed ID: 26554003 [TBL] [Abstract][Full Text] [Related]
22. Substrate O-glycosylation actively regulates extracellular proteolysis. Madzharova E; Sabino F; Kalogeropoulos K; Francavilla C; Auf dem Keller U Protein Sci; 2024 Aug; 33(8):e5128. PubMed ID: 39074261 [TBL] [Abstract][Full Text] [Related]
23. O-GlcNAc transferase affects the signal transduction of β1 adrenoceptor in adult rat cardiomyocytes by increasing the O-GlcNAcylation of β1 adrenoceptor. Cao H; Hu Y; Zhu X; Yao N; Gu J; Wang Y; Zhu W Biochem Biophys Res Commun; 2020 Jul; 528(1):71-77. PubMed ID: 32471715 [TBL] [Abstract][Full Text] [Related]
24. Redox and proteolytic regulation of cardiomyocyte β Steinberg SF Front Immunol; 2023; 14():1306467. PubMed ID: 38111579 [TBL] [Abstract][Full Text] [Related]
25. Human red and green cone opsins are Salom D; Jin H; Gerken TA; Yu C; Huang L; Palczewski K J Biol Chem; 2019 May; 294(20):8123-8133. PubMed ID: 30948514 [TBL] [Abstract][Full Text] [Related]
26. Differential Downregulation of β Xu B; Bahriz S; Salemme VR; Wang Y; Zhu C; Zhao M; Xiang YK J Am Heart Assoc; 2024 Jun; 13(12):e033733. PubMed ID: 38860414 [TBL] [Abstract][Full Text] [Related]
27. Improved online LC-MS/MS identification of O-glycosites by EThcD fragmentation, chemoenzymatic reaction, and SPE enrichment. Yang S; Wang Y; Mann M; Wang Q; Tian E; Zhang L; Cipollo JF; Ten Hagen KG; Tabak LA Glycoconj J; 2021 Apr; 38(2):145-156. PubMed ID: 33068214 [TBL] [Abstract][Full Text] [Related]
28. An efficient approach for the characterization of mucin-type glycopeptides: the effect of O-glycosylation on the conformation of synthetic mucin peptides. Hashimoto R; Fujitani N; Takegawa Y; Kurogochi M; Matsushita T; Naruchi K; Ohyabu N; Hinou H; Gao XD; Manri N; Satake H; Kaneko A; Sakamoto T; Nishimura S Chemistry; 2011 Feb; 17(8):2393-404. PubMed ID: 21264968 [TBL] [Abstract][Full Text] [Related]
29. Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Revoredo L; Wang S; Bennett EP; Clausen H; Moremen KW; Jarvis DL; Ten Hagen KG; Tabak LA; Gerken TA Glycobiology; 2016 Apr; 26(4):360-76. PubMed ID: 26610890 [TBL] [Abstract][Full Text] [Related]
30. The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Wandall HH; Irazoqui F; Tarp MA; Bennett EP; Mandel U; Takeuchi H; Kato K; Irimura T; Suryanarayanan G; Hollingsworth MA; Clausen H Glycobiology; 2007 Apr; 17(4):374-87. PubMed ID: 17215257 [TBL] [Abstract][Full Text] [Related]
31. Enhanced mass spectrometric mapping of the human GalNAc-type O-glycoproteome with SimpleCells. Vakhrushev SY; Steentoft C; Vester-Christensen MB; Bennett EP; Clausen H; Levery SB Mol Cell Proteomics; 2013 Apr; 12(4):932-44. PubMed ID: 23399548 [TBL] [Abstract][Full Text] [Related]
32. Proteomic analysis of beta1-adrenergic receptor interactions with PDZ scaffold proteins. He J; Bellini M; Inuzuka H; Xu J; Xiong Y; Yang X; Castleberry AM; Hall RA J Biol Chem; 2006 Feb; 281(5):2820-7. PubMed ID: 16316992 [TBL] [Abstract][Full Text] [Related]
33. Interaction with cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) inhibits beta1-adrenergic receptor surface expression. He J; Bellini M; Xu J; Castleberry AM; Hall RA J Biol Chem; 2004 Nov; 279(48):50190-6. PubMed ID: 15358775 [TBL] [Abstract][Full Text] [Related]
34. Mapping the putative G protein-coupled receptor (GPCR) docking site on GPCR kinase 2: insights from intact cell phosphorylation and recruitment assays. Beautrait A; Michalski KR; Lopez TS; Mannix KM; McDonald DJ; Cutter AR; Medina CB; Hebert AM; Francis CJ; Bouvier M; Tesmer JJ; Sterne-Marr R J Biol Chem; 2014 Sep; 289(36):25262-75. PubMed ID: 25049229 [TBL] [Abstract][Full Text] [Related]
35. N-glycosylation in expression and function of beta-adrenergic receptors. George ST; Ruoho AE; Malbon CC J Biol Chem; 1986 Dec; 261(35):16559-64. PubMed ID: 3023355 [TBL] [Abstract][Full Text] [Related]
36. Site directed processing: role of amino acid sequences and glycosylation of acceptor glycopeptides in the assembly of extended mucin type O-glycan core 2. Brockhausen I; Dowler T; Paulsen H Biochim Biophys Acta; 2009 Oct; 1790(10):1244-57. PubMed ID: 19524017 [TBL] [Abstract][Full Text] [Related]
37. [β-arrestin2 recruitment by β-adrenergic receptor agonists and antagonists]. Wang YR; Cheng DQ; Ma L; Liu X Sheng Li Xue Bao; 2022 Dec; 74(6):993-1004. PubMed ID: 36594387 [TBL] [Abstract][Full Text] [Related]
38. Endogenous N-terminal Domain Cleavage Modulates α1D-Adrenergic Receptor Pharmacodynamics. Kountz TS; Lee KS; Aggarwal-Howarth S; Curran E; Park JM; Harris DA; Stewart A; Hendrickson J; Camp ND; Wolf-Yadlin A; Wang EH; Scott JD; Hague C J Biol Chem; 2016 Aug; 291(35):18210-21. PubMed ID: 27382054 [TBL] [Abstract][Full Text] [Related]
39. N-terminal entrance loop of yeast Yps1 and O-glycosylation of substrates are determinant factors controlling the shedding activity of this GPI-anchored endopeptidase. Dubé AK; Bélanger M; Gagnon-Arsenault I; Bourbonnais Y BMC Microbiol; 2015 Feb; 15():50. PubMed ID: 25886139 [TBL] [Abstract][Full Text] [Related]
40. Role of AKAP79/150 protein in β1-adrenergic receptor trafficking and signaling in mammalian cells. Li X; Nooh MM; Bahouth SW J Biol Chem; 2013 Nov; 288(47):33797-33812. PubMed ID: 24121510 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]