These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: Effect of processing methods, pore size, and surface area. Osorio M; Fernández-Morales P; Gañán P; Zuluaga R; Kerguelen H; Ortiz I; Castro C J Biomed Mater Res A; 2019 Feb; 107(2):348-359. PubMed ID: 30421501 [TBL] [Abstract][Full Text] [Related]
7. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells. Wu Z; Xie S; Kang Y; Shan X; Li Q; Cai Z Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112393. PubMed ID: 34579912 [TBL] [Abstract][Full Text] [Related]
8. Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties. Bang WY; Kim DH; Kang MD; Yang J; Huh T; Lim YW; Jung YH J Microbiol Biotechnol; 2021 Oct; 31(10):1366-1372. PubMed ID: 34319261 [TBL] [Abstract][Full Text] [Related]
9. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels. Zhang P; Chen L; Zhang Q; Jönsson LJ; Hong FF Biotechnol Prog; 2016 Jul; 32(4):1077-84. PubMed ID: 27088548 [TBL] [Abstract][Full Text] [Related]
10. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809 [TBL] [Abstract][Full Text] [Related]
11. Ex Vivo and In Vivo Biocompatibility Assessment (Blood and Tissue) of Three-Dimensional Bacterial Nanocellulose Biomaterials for Soft Tissue Implants. Osorio M; Cañas A; Puerta J; Díaz L; Naranjo T; Ortiz I; Castro C Sci Rep; 2019 Jul; 9(1):10553. PubMed ID: 31332259 [TBL] [Abstract][Full Text] [Related]
12. Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation. Ronzoni FL; Aliberti F; Scocozza F; Benedetti L; Auricchio F; Sampaolesi M; Cusella G; Redwan IN; Ceccarelli G; Conti M J Tissue Eng Regen Med; 2022 May; 16(5):484-495. PubMed ID: 35246958 [TBL] [Abstract][Full Text] [Related]
13. Cellular and Molecular Interaction of Human Dermal Fibroblasts with Bacterial Nanocellulose Composite Hydrogel for Tissue Regeneration. Xi Loh EY; Fauzi MB; Ng MH; Ng PY; Ng SF; Ariffin H; Mohd Amin MCI ACS Appl Mater Interfaces; 2018 Nov; 10(46):39532-39543. PubMed ID: 30372014 [TBL] [Abstract][Full Text] [Related]
14. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Jo H; Sim M; Kim S; Yang S; Yoo Y; Park JH; Yoon TH; Kim MG; Lee JY Acta Biomater; 2017 Jan; 48():100-109. PubMed ID: 27989919 [TBL] [Abstract][Full Text] [Related]
15. A cholecystic extracellular matrix-based hybrid hydrogel for skeletal muscle tissue engineering. Raj R; Sobhan PK; Pratheesh KV; Anilkumar TV J Biomed Mater Res A; 2020 Sep; 108(9):1922-1933. PubMed ID: 32319161 [TBL] [Abstract][Full Text] [Related]
16. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System. Chaturvedi V; Dye DE; Kinnear BF; van Kuppevelt TH; Grounds MD; Coombe DR PLoS One; 2015; 10(6):e0127675. PubMed ID: 26030912 [TBL] [Abstract][Full Text] [Related]
18. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. Tamo AK J Mater Chem B; 2024 Aug; 12(32):7692-7759. PubMed ID: 38805188 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499 [TBL] [Abstract][Full Text] [Related]
20. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Martínez Ávila H; Feldmann EM; Pleumeekers MM; Nimeskern L; Kuo W; de Jong WC; Schwarz S; Müller R; Hendriks J; Rotter N; van Osch GJ; Stok KS; Gatenholm P Biomaterials; 2015 Mar; 44():122-33. PubMed ID: 25617132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]