These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 39207158)
1. Engineering of a hydroxysteroid dehydrogenase with simultaneous enhancement in activity and thermostability for efficient biosynthesis of ursodeoxycholic acid. Li Y; Li S-F; Zhang L; Xue Y-P; Zheng Y-G Appl Environ Microbiol; 2024 Sep; 90(9):e0123724. PubMed ID: 39207158 [TBL] [Abstract][Full Text] [Related]
2. Structure of NADP Wang R; Wu J; Jin DK; Chen Y; Lv Z; Chen Q; Miao Q; Huo X; Wang F Acta Crystallogr F Struct Biol Commun; 2017 May; 73(Pt 5):246-252. PubMed ID: 28471355 [TBL] [Abstract][Full Text] [Related]
3. Machine-Learning-Guided Engineering of an NADH-Dependent 7β-Hydroxysteroid Dehydrogenase for Economic Synthesis of Ursodeoxycholic Acid. Wang MQ; You ZN; Yang BY; Xia ZW; Chen Q; Pan J; Li CX; Xu JH J Agric Food Chem; 2023 Dec; 71(49):19672-19681. PubMed ID: 38016669 [TBL] [Abstract][Full Text] [Related]
4. Identification, cloning, heterologous expression, and characterization of a NADPH-dependent 7β-hydroxysteroid dehydrogenase from Collinsella aerofaciens. Liu L; Aigner A; Schmid RD Appl Microbiol Biotechnol; 2011 Apr; 90(1):127-35. PubMed ID: 21181147 [TBL] [Abstract][Full Text] [Related]
5. Novel whole-cell biocatalysts with recombinant hydroxysteroid dehydrogenases for the asymmetric reduction of dehydrocholic acid. Braun M; Sun B; Anselment B; Weuster-Botz D Appl Microbiol Biotechnol; 2012 Sep; 95(6):1457-68. PubMed ID: 22581067 [TBL] [Abstract][Full Text] [Related]
6. Sequence and structure-guided discovery of a novel NADH-dependent 7β-hydroxysteroid dehydrogenase for efficient biosynthesis of ursodeoxycholic acid. Huang B; Yang K; Amanze C; Yan Z; Zhou H; Liu X; Qiu G; Zeng W Bioorg Chem; 2023 Feb; 131():106340. PubMed ID: 36586301 [TBL] [Abstract][Full Text] [Related]
7. Engineering 7β-Hydroxysteroid Dehydrogenase for Enhanced Ursodeoxycholic Acid Production by Multiobjective Directed Evolution. Zheng MM; Chen KC; Wang RF; Li H; Li CX; Xu JH J Agric Food Chem; 2017 Feb; 65(6):1178-1185. PubMed ID: 28116898 [TBL] [Abstract][Full Text] [Related]
8. Cloning, expression, and biochemical characterization of a novel NADP Bakonyi D; Hummel W Enzyme Microb Technol; 2017 Apr; 99():16-24. PubMed ID: 28193327 [TBL] [Abstract][Full Text] [Related]
9. Multi-enzymatic one-pot reduction of dehydrocholic acid to 12-keto-ursodeoxycholic acid with whole-cell biocatalysts. Sun B; Kantzow C; Bresch S; Castiglione K; Weuster-Botz D Biotechnol Bioeng; 2013 Jan; 110(1):68-77. PubMed ID: 22806613 [TBL] [Abstract][Full Text] [Related]
10. Enhanced activity and substrate tolerance of 7α-hydroxysteroid dehydrogenase by directed evolution for 7-ketolithocholic acid production. Huang B; Zhao Q; Zhou JH; Xu G Appl Microbiol Biotechnol; 2019 Mar; 103(6):2665-2674. PubMed ID: 30734123 [TBL] [Abstract][Full Text] [Related]
11. Dynamic mechanistic modeling of the multienzymatic one-pot reduction of dehydrocholic acid to 12-keto ursodeoxycholic acid with competing substrates and cofactors. Sun B; Hartl F; Castiglione K; Weuster-Botz D Biotechnol Prog; 2015; 31(2):375-86. PubMed ID: 25641915 [TBL] [Abstract][Full Text] [Related]
12. Engineering Clostridium absonum 7α-hydroxysteroid Dehydrogenase for Enhancing Thermostability Based on Flexible Site and ΔΔG Prediction. Lou D; Tan J; Zhu L; Ji S; Tang S; Yao K; Han J; Wang B Protein Pept Lett; 2018; 25(3):230-235. PubMed ID: 29141528 [TBL] [Abstract][Full Text] [Related]
13. Targeted Synthesis and Characterization of a Gene Cluster Encoding NAD(P)H-Dependent 3α-, 3β-, and 12α-Hydroxysteroid Dehydrogenases from Eggerthella CAG:298, a Gut Metagenomic Sequence. Mythen SM; Devendran S; Méndez-García C; Cann I; Ridlon JM Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29330189 [TBL] [Abstract][Full Text] [Related]
14. An Overview of 7α- and 7β-Hydroxysteroid Dehydrogenases: Structure, Specificity and Practical Application. Lou D; Liu X; Tan J Protein Pept Lett; 2021; 28(11):1206-1219. PubMed ID: 34397319 [TBL] [Abstract][Full Text] [Related]
15. In search of sustainable chemical processes: cloning, recombinant expression, and functional characterization of the 7α- and 7β-hydroxysteroid dehydrogenases from Clostridium absonum. Ferrandi EE; Bertolesi GM; Polentini F; Negri A; Riva S; Monti D Appl Microbiol Biotechnol; 2012 Sep; 95(5):1221-33. PubMed ID: 22198717 [TBL] [Abstract][Full Text] [Related]
16. NAD- and NADP-dependent 7alpha-hydroxysteroid dehydrogenases from bacteroides fragilis. Macdonald IA; Williams CN; Mahony DE; Christie WM Biochim Biophys Acta; 1975 Mar; 384(1):12-24. PubMed ID: 236764 [TBL] [Abstract][Full Text] [Related]
17. Cofactor-dependence alteration of 7β-hydroxysteroid dehydrogenase: Enhancing one-pot synthesis efficiency of chenodeoxycholic acid to ursodeoxycholic acid through cofactor self-recycling. Xie X; Huang R; Zhang W; Zhang R Int J Biol Macromol; 2024 Oct; 280(Pt 1):136328. PubMed ID: 39378924 [TBL] [Abstract][Full Text] [Related]
18. Expression and Functional Characterization of a Novel NAD(H)- dependent 3α-HSDH. Lou D; Zhou Z; Zhang X; Cao Y; Long Q; Luo C; Li Q; Liu X; Tan J Protein Pept Lett; 2022; 29(11):946-953. PubMed ID: 35996269 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of human type III 3alpha-hydroxysteroid dehydrogenase/bile acid binding protein complexed with NADP(+) and ursodeoxycholate. Jin Y; Stayrook SE; Albert RH; Palackal NT; Penning TM; Lewis M Biochemistry; 2001 Aug; 40(34):10161-8. PubMed ID: 11513593 [TBL] [Abstract][Full Text] [Related]
20. Not exclusively the activity, but the sweet spot: a dehydrogenase point mutation synergistically boosts activity, substrate tolerance, thermal stability and yield. Cen YK; Zhang L; Jiang Y; Meng XF; Li Y; Xiang C; Xue YP; Zheng YG Org Biomol Chem; 2024 Apr; 22(15):3009-3018. PubMed ID: 38529785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]