These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 39207202)

  • 1. Free Energy Analysis of Peptide-Induced Pore Formation in Lipid Membranes by Bridging Atomistic and Coarse-Grained Simulations.
    Richardson JD; Van Lehn RC
    J Phys Chem B; 2024 Sep; 128(36):8737-8752. PubMed ID: 39207202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane Activity of Melittin and Magainin-I at Low Peptide-to-Lipid Ratio: Different Types of Pores and Translocation Mechanisms.
    Volovik MV; Batishchev OV
    Biomolecules; 2024 Sep; 14(9):. PubMed ID: 39334885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational studies of membrane pore formation induced by Pin2.
    Velasco-Bolom JL; Garduño-Juárez R
    J Biomol Struct Dyn; 2022 Jul; 40(11):5060-5068. PubMed ID: 33397200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial peptides bind more strongly to membrane pores.
    Mihajlovic M; Lazaridis T
    Biochim Biophys Acta; 2010 Aug; 1798(8):1494-502. PubMed ID: 20188066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.
    Hu Y; Sinha SK; Patel S
    Langmuir; 2015 Jun; 31(24):6615-31. PubMed ID: 25614183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local pressure changes in lipid bilayers due to adsorption of melittin and magainin-h2 antimicrobial peptides: results from computer simulations.
    Goliaei A; Santo KP; Berkowitz ML
    J Phys Chem B; 2014 Nov; 118(44):12673-9. PubMed ID: 25299589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling peptide binding to anionic membrane pores.
    He Y; Prieto L; Lazaridis T
    J Comput Chem; 2013 Jun; 34(17):1463-75. PubMed ID: 23580260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative antimicrobial action of melittin on lipid membranes: A coarse-grained molecular dynamics study.
    Miyazaki Y; Shinoda W
    Biochim Biophys Acta Biomembr; 2022 Sep; 1864(9):183955. PubMed ID: 35526599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity.
    Hu Y; Liu X; Sinha SK; Patel S
    J Phys Chem B; 2014 Mar; 118(10):2670-82. PubMed ID: 24506488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative Modes of Action of Antimicrobial Peptides Characterized with Atomistic Simulations: A Study on Cecropin B.
    Hsiao YW; Hedström M; Losasso V; Metz S; Crain J; Winn M
    J Phys Chem B; 2018 Jun; 122(22):5908-5921. PubMed ID: 29737852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial peptides in toroidal and cylindrical pores.
    Mihajlovic M; Lazaridis T
    Biochim Biophys Acta; 2010 Aug; 1798(8):1485-93. PubMed ID: 20403332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral Antimicrobial Peptide Gomesin Induces Membrane Protrusion, Folding, and Laceration.
    Zhang S; Fu L; Wan M; Song J; Gao L; Fang W
    Langmuir; 2019 Oct; 35(40):13233-13242. PubMed ID: 31510749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multistep Molecular Dynamics Simulations Identify the Highly Cooperative Activity of Melittin in Recognizing and Stabilizing Membrane Pores.
    Sun D; Forsman J; Woodward CE
    Langmuir; 2015 Sep; 31(34):9388-401. PubMed ID: 26267389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational study of solution behavior of magainin 2 monomers.
    Petkov P; Marinova R; Kochev V; Ilieva N; Lilkova E; Litov L
    J Biomol Struct Dyn; 2019 Mar; 37(5):1231-1240. PubMed ID: 29557267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures.
    Balatti GE; Martini MF; Pickholz M
    J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding Antimicrobial Peptide Synergy: Differential Binding Interactions and Their Impact on Membrane Integrity.
    Yoon J; Jo Y; Shin S
    J Phys Chem B; 2024 Oct; 128(40):9756-9771. PubMed ID: 39347577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free energy analysis of membrane pore formation process in the presence of multiple melittin peptides.
    Miyazaki Y; Okazaki S; Shinoda W
    Biochim Biophys Acta Biomembr; 2019 Jul; 1861(7):1409-1419. PubMed ID: 30885804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Melittin Inserts into Cell Membrane: Conformational Changes, Inter-Peptide Cooperation, and Disturbance on the Membrane.
    Hong J; Lu X; Deng Z; Xiao S; Yuan B; Yang K
    Molecules; 2019 May; 24(9):. PubMed ID: 31067828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.