These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Liu S; Kwon M; Mannino M; Yang N; Renda F; Khodjakov A; Pellman D Nature; 2018 Sep; 561(7724):551-555. PubMed ID: 30232450 [TBL] [Abstract][Full Text] [Related]
6. Impaired nuclear functions in micronuclei results in genome instability and chromothripsis. Terradas M; Martín M; Genescà A Arch Toxicol; 2016 Nov; 90(11):2657-2667. PubMed ID: 27542123 [TBL] [Abstract][Full Text] [Related]
7. Micronuclei-based model system reveals functional consequences of chromothripsis in human cells. Kneissig M; Keuper K; de Pagter MS; van Roosmalen MJ; Martin J; Otto H; Passerini V; Campos Sparr A; Renkens I; Kropveld F; Vasudevan A; Sheltzer JM; Kloosterman WP; Storchova Z Elife; 2019 Nov; 8():. PubMed ID: 31778112 [TBL] [Abstract][Full Text] [Related]
8. Association of CHMP4B and autophagy with micronuclei: implications for cataract formation. Sagona AP; Nezis IP; Stenmark H Biomed Res Int; 2014; 2014():974393. PubMed ID: 24741567 [TBL] [Abstract][Full Text] [Related]
9. Autophagic removal of micronuclei. Rello-Varona S; Lissa D; Shen S; Niso-Santano M; Senovilla L; Mariño G; Vitale I; Jemaá M; Harper F; Pierron G; Castedo M; Kroemer G Cell Cycle; 2012 Jan; 11(1):170-6. PubMed ID: 22185757 [TBL] [Abstract][Full Text] [Related]
10. cGAS surveillance of micronuclei links genome instability to innate immunity. Mackenzie KJ; Carroll P; Martin CA; Murina O; Fluteau A; Simpson DJ; Olova N; Sutcliffe H; Rainger JK; Leitch A; Osborn RT; Wheeler AP; Nowotny M; Gilbert N; Chandra T; Reijns MAM; Jackson AP Nature; 2017 Aug; 548(7668):461-465. PubMed ID: 28738408 [TBL] [Abstract][Full Text] [Related]
12. Altered nuclear envelope structure and proteasome function of micronuclei. Maass KK; Rosing F; Ronchi P; Willmund KV; Devens F; Hergt M; Herrmann H; Lichter P; Ernst A Exp Cell Res; 2018 Oct; 371(2):353-363. PubMed ID: 30149001 [TBL] [Abstract][Full Text] [Related]
13. Understanding the birth of rupture-prone and irreparable micronuclei. Guo X; Dai X; Wu X; Zhou T; Ni J; Xue J; Wang X Chromosoma; 2020 Dec; 129(3-4):181-200. PubMed ID: 32671520 [TBL] [Abstract][Full Text] [Related]
14. Detection of Impaired DNA Replication and Repair in Micronuclei as Indicators of Genomic Instability and Chromothripsis. Terradas M; Martín M; Genescà A Methods Mol Biol; 2018; 1769():197-208. PubMed ID: 29564826 [TBL] [Abstract][Full Text] [Related]
15. The ubiquitin-specific protease USP8 directly deubiquitinates SQSTM1/p62 to suppress its autophagic activity. Peng H; Yang F; Hu Q; Sun J; Peng C; Zhao Y; Huang C Autophagy; 2020 Apr; 16(4):698-708. PubMed ID: 31241013 [TBL] [Abstract][Full Text] [Related]
16. Chromothripsis from DNA damage in micronuclei. Zhang CZ; Spektor A; Cornils H; Francis JM; Jackson EK; Liu S; Meyerson M; Pellman D Nature; 2015 Jun; 522(7555):179-84. PubMed ID: 26017310 [TBL] [Abstract][Full Text] [Related]
17. Autophagy Regulates Chromatin Ubiquitination in DNA Damage Response through Elimination of SQSTM1/p62. Wang Y; Zhang N; Zhang L; Li R; Fu W; Ma K; Li X; Wang L; Wang J; Zhang H; Gu W; Zhu WG; Zhao Y Mol Cell; 2016 Jul; 63(1):34-48. PubMed ID: 27345151 [TBL] [Abstract][Full Text] [Related]
18. Small but mighty: the causes and consequences of micronucleus rupture. Kwon M; Leibowitz ML; Lee JH Exp Mol Med; 2020 Nov; 52(11):1777-1786. PubMed ID: 33230251 [TBL] [Abstract][Full Text] [Related]
19. Chromothripsis: A New Mechanism for Rapid Karyotype Evolution. Leibowitz ML; Zhang CZ; Pellman D Annu Rev Genet; 2015; 49():183-211. PubMed ID: 26442848 [TBL] [Abstract][Full Text] [Related]