These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 39208508)
1. Multifunctional Tetrode-like Drug delivery, Optical stimulation, and Electrophysiology (Tetro-DOpE) probes. Kim J; Gilbert E; Arndt K; Huang H; Oleniacz P; Jiang S; Kimbrough I; Sontheimer H; English DF; Jia X Biosens Bioelectron; 2024 Dec; 265():116696. PubMed ID: 39208508 [TBL] [Abstract][Full Text] [Related]
2. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice. Osanai H; Kitamura T; Yamamoto J J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259 [TBL] [Abstract][Full Text] [Related]
3. T-DOpE probes reveal sensitivity of hippocampal oscillations to cannabinoids in behaving mice. Kim J; Huang H; Gilbert ET; Arndt KC; English DF; Jia X Nat Commun; 2024 Feb; 15(1):1686. PubMed ID: 38402238 [TBL] [Abstract][Full Text] [Related]
4. High-density optrodes for multi-scale electrophysiology and optogenetic stimulation. Chamanzar M; Borysov M; Maharbiz MM; Blanche TJ Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6838-41. PubMed ID: 25571567 [TBL] [Abstract][Full Text] [Related]
5. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering. Canales A; Park S; Kilias A; Anikeeva P Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583 [TBL] [Abstract][Full Text] [Related]
6. The DMCdrive: practical 3D-printable micro-drive system for reliable chronic multi-tetrode recording and optogenetic application in freely behaving rodents. Kim H; Brünner HS; Carlén M Sci Rep; 2020 Jul; 10(1):11838. PubMed ID: 32678238 [TBL] [Abstract][Full Text] [Related]
7. Tapered Drug delivery, Optical stimulation, and Electrophysiology (T-DOpE) probes reveal the importance of cannabinoid signaling in hippocampal CA1 oscillations in behaving mice. Kim J; Huang H; Gilbert E; Arndt K; English DF; Jia X bioRxiv; 2023 Jun; ():. PubMed ID: 37333172 [TBL] [Abstract][Full Text] [Related]
8. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Canales A; Jia X; Froriep UP; Koppes RA; Tringides CM; Selvidge J; Lu C; Hou C; Wei L; Fink Y; Anikeeva P Nat Biotechnol; 2015 Mar; 33(3):277-84. PubMed ID: 25599177 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats. Sharma K; Jäckel Z; Schneider A; Paul O; Diester I; Ruther P J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795066 [No Abstract] [Full Text] [Related]
10. Low-cost and easy-fabrication lightweight drivable electrode array for multiple-regions electrophysiological recording in free-moving mice. Sun C; Cao Y; Huang J; Huang K; Lu Y; Zhong C J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996053 [No Abstract] [Full Text] [Related]
11. Spatially expandable fiber-based probes as a multifunctional deep brain interface. Jiang S; Patel DC; Kim J; Yang S; Mills WA; Zhang Y; Wang K; Feng Z; Vijayan S; Cai W; Wang A; Guo Y; Kimbrough IF; Sontheimer H; Jia X Nat Commun; 2020 Nov; 11(1):6115. PubMed ID: 33257708 [TBL] [Abstract][Full Text] [Related]
12. A novel tetrode microdrive for simultaneous multi-neuron recording from different regions of primate brain. Santos L; Opris I; Fuqua J; Hampson RE; Deadwyler SA J Neurosci Methods; 2012 Apr; 205(2):368-74. PubMed ID: 22326226 [TBL] [Abstract][Full Text] [Related]
13. In vivo performance of a microelectrode neural probe with integrated drug delivery. Rohatgi P; Langhals NB; Kipke DR; Patil PG Neurosurg Focus; 2009 Jul; 27(1):E8. PubMed ID: 19569896 [TBL] [Abstract][Full Text] [Related]
14. Flexible fiber-based optoelectronics for neural interfaces. Park S; Loke G; Fink Y; Anikeeva P Chem Soc Rev; 2019 Mar; 48(6):1826-1852. PubMed ID: 30815657 [TBL] [Abstract][Full Text] [Related]
15. [Multi-channel in vivo recording technique: microdrive array fabrication and electrode implantation in mice]. Ma XY; Zhang YY; Wang LN; Lin LN Sheng Li Xue Bao; 2013 Dec; 65(6):637-46. PubMed ID: 24343722 [TBL] [Abstract][Full Text] [Related]
16. HOPE: Hybrid-Drive Combining Optogenetics, Pharmacology and Electrophysiology. Delcasso S; Denagamage S; Britton Z; Graybiel AM Front Neural Circuits; 2018; 12():41. PubMed ID: 29872379 [TBL] [Abstract][Full Text] [Related]
17. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo. Shin H; Son Y; Chae U; Kim J; Choi N; Lee HJ; Woo J; Cho Y; Yang SH; Lee CJ; Cho IJ Nat Commun; 2019 Aug; 10(1):3777. PubMed ID: 31439845 [TBL] [Abstract][Full Text] [Related]
18. TetrODrive: an open-source microdrive for combined electrophysiology and optophysiology. Brosch M; Vlasenko A; Ohl FW; Lippert MT J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33908896 [No Abstract] [Full Text] [Related]
19. Design and fabrication of ultralight weight, adjustable multi-electrode probes for electrophysiological recordings in mice. Brunetti PM; Wimmer RD; Liang L; Siegle JH; Voigts J; Wilson M; Halassa MM J Vis Exp; 2014 Sep; (91):e51675. PubMed ID: 25225749 [TBL] [Abstract][Full Text] [Related]
20. Fiber-based Probes for Electrophysiology, Photometry, Optical and Electrical Stimulation, Drug Delivery, and Fast-Scan Cyclic Voltammetry In Vivo. Driscoll N; Antonini MJ; Cannon TM; Maretich P; Olaitan G; Phi Van VD; Nagao K; Sahasrabudhe A; Vargas E; Hunt S; Hummel M; Mupparaju S; Jasanoff A; Venton J; Anikeeva P bioRxiv; 2024 Jun; ():. PubMed ID: 38895451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]