These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 39208632)
1. Comparative quantitative phosphoproteomic and parallel reaction monitoring analysis of soybean roots under aluminum stress identify candidate phosphoproteins involved in aluminum resistance capacity. He Y; Wang Z; Cui W; Zhang Q; Zheng M; Li W; Gao J; Yang Z; You J J Hazard Mater; 2024 Nov; 479():135485. PubMed ID: 39208632 [TBL] [Abstract][Full Text] [Related]
2. Quantitative phosphoproteomic analysis provides insights into the aluminum-responsiveness of Tamba black soybean. Han R; Wei Y; Xie Y; Liu L; Jiang C; Yu Y PLoS One; 2020; 15(8):e0237845. PubMed ID: 32813721 [TBL] [Abstract][Full Text] [Related]
3. Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum. Nguyen TH; Brechenmacher L; Aldrich JT; Clauss TR; Gritsenko MA; Hixson KK; Libault M; Tanaka K; Yang F; Yao Q; Pasa-Tolić L; Xu D; Nguyen HT; Stacey G Mol Cell Proteomics; 2012 Nov; 11(11):1140-55. PubMed ID: 22843990 [TBL] [Abstract][Full Text] [Related]
4. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress. Yin X; Sakata K; Komatsu S J Proteome Res; 2014 Dec; 13(12):5618-34. PubMed ID: 25316100 [TBL] [Abstract][Full Text] [Related]
5. Two Half-Size ATP-Binding Cassette Transporters Are Implicated in Aluminum Tolerance in Soybean. Huang J; Li H; Chen Y; Li X; Jia Z; Cheng K; Wang L; Wang H Int J Mol Sci; 2024 Sep; 25(19):. PubMed ID: 39408662 [TBL] [Abstract][Full Text] [Related]
6. GmMYB183, a R2R3-MYB Transcription Factor in Tamba Black Soybean ( Wei Y; Han R; Yu Y Biomolecules; 2024 Jun; 14(6):. PubMed ID: 38927127 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Salt Tolerance of Rhizobia-inoculated Soybean Correlates with Decreased Phosphorylation of the Transcription Factor GmMYB183 and Altered Flavonoid Biosynthesis. Pi E; Xu J; Li H; Fan W; Zhu C; Zhang T; Jiang J; He L; Lu H; Wang H; Poovaiah BW; Du L Mol Cell Proteomics; 2019 Nov; 18(11):2225-2243. PubMed ID: 31467032 [TBL] [Abstract][Full Text] [Related]
8. Comparative Transcriptome Analysis of Two Contrasting Soybean Varieties in Response to Aluminum Toxicity. Zhao L; Cui J; Cai Y; Yang S; Liu J; Wang W; Gai J; Hu Z; Li Y Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32560405 [No Abstract] [Full Text] [Related]
9. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Liang C; Piñeros MA; Tian J; Yao Z; Sun L; Liu J; Shaff J; Coluccio A; Kochian LV; Liao H Plant Physiol; 2013 Mar; 161(3):1347-61. PubMed ID: 23341359 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of Soybean Roots' Tolerances to Salinity Revealed by Proteomic and Phosphoproteomic Comparisons Between Two Cultivars. Pi E; Qu L; Hu J; Huang Y; Qiu L; Lu H; Jiang B; Liu C; Peng T; Zhao Y; Wang H; Tsai SN; Ngai S; Du L Mol Cell Proteomics; 2016 Jan; 15(1):266-88. PubMed ID: 26407991 [TBL] [Abstract][Full Text] [Related]
11. Identification of an ATP-Binding Cassette Transporter Implicated in Aluminum Tolerance in Wild Soybean ( Wen K; Pan H; Li X; Huang R; Ma Q; Nian H Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948067 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of Reference Genes for Normalization of Gene Expression Using Quantitative RT-PCR under Aluminum, Cadmium, and Heat Stresses in Soybean. Gao M; Liu Y; Ma X; Shuai Q; Gai J; Li Y PLoS One; 2017; 12(1):e0168965. PubMed ID: 28046130 [TBL] [Abstract][Full Text] [Related]
13. Root iTRAQ protein profile analysis of two Citrus species differing in aluminum-tolerance in response to long-term aluminum-toxicity. Jiang HX; Yang LT; Qi YP; Lu YB; Huang ZR; Chen LS BMC Genomics; 2015 Nov; 16():949. PubMed ID: 26573913 [TBL] [Abstract][Full Text] [Related]
14. Transient proliferation of proanthocyanidin-accumulating cells on the epidermal apex contributes to highly aluminum-resistant root elongation in camphor tree. Osawa H; Endo I; Hara Y; Matsushima Y; Tange T Plant Physiol; 2011 Jan; 155(1):433-46. PubMed ID: 21045123 [TBL] [Abstract][Full Text] [Related]
15. Quantitative proteomics of nuclear phosphoproteins in the root tip of soybean during the initial stages of flooding stress. Yin X; Komatsu S J Proteomics; 2015 Apr; 119():183-95. PubMed ID: 25724727 [TBL] [Abstract][Full Text] [Related]
16. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Zhen Y; Qi JL; Wang SS; Su J; Xu GH; Zhang MS; Miao L; Peng XX; Tian D; Yang YH Physiol Plant; 2007 Dec; 131(4):542-54. PubMed ID: 18251846 [TBL] [Abstract][Full Text] [Related]
17. The interaction of salicylic acid and Ca(2+) alleviates aluminum toxicity in soybean (Glycine max L.). Lan T; You J; Kong L; Yu M; Liu M; Yang Z Plant Physiol Biochem; 2016 Jan; 98():146-54. PubMed ID: 26691059 [TBL] [Abstract][Full Text] [Related]
18. iTRAQ-based proteomics screen for potential regulators of wheat (Triticum aestivum L.) root cell wall component response to Al stress. Yang Y; Ma L; Zeng H; Chen LY; Zheng Y; Li CX; Yang ZP; Wu N; Mu X; Dai CY; Guan HL; Cui XM; Liu Y Gene; 2018 Oct; 675():301-311. PubMed ID: 30180969 [TBL] [Abstract][Full Text] [Related]
19. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Liao H; Wan H; Shaff J; Wang X; Yan X; Kochian LV Plant Physiol; 2006 Jun; 141(2):674-84. PubMed ID: 16648222 [TBL] [Abstract][Full Text] [Related]
20. Quantitative Phosphoproteomic Analysis Provides Insight into the Response to Short-Term Drought Stress in Ammopiptanthus mongolicus Roots. Sun H; Xia B; Wang X; Gao F; Zhou Y Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29039783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]