These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39208891)
1. High performance poly(lactic acid)/poly(ether-block-amide) blend-based bionanocomposites containing carbon nanotubes and/or organoclay. Behera K; Mishra B; Yadav M; Chang YH; Chiu FC Int J Biol Macromol; 2024 Nov; 279(Pt 1):135122. PubMed ID: 39208891 [TBL] [Abstract][Full Text] [Related]
2. Modifications of Phase Morphology, Physical Properties, and Burning Anti-Dripping Performance of Compatibilized Poly(butylene succinate)/High-Density Polyethylene Blend by Adding Nanofillers. Behera K; Tsai CH; Chang YH; Chiu FC Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006117 [TBL] [Abstract][Full Text] [Related]
3. Selective dispersion of carbon nanotubes and nanoclay in biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with improved toughness, strength and thermal stability. Zhu B; Bai T; Wang P; Wang Y; Liu C; Shen C Int J Biol Macromol; 2020 Jun; 153():1272-1280. PubMed ID: 31758994 [TBL] [Abstract][Full Text] [Related]
4. Polyamide 6/Poly(vinylidene fluoride) Blend-Based Nanocomposites with Enhanced Rigidity: Selective Localization of Carbon Nanotube and Organoclay. Lin HM; Behera K; Yadav M; Chiu FC Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936709 [TBL] [Abstract][Full Text] [Related]
5. Biodegradable poly(lactic acid) nanocomposites reinforced and toughened by carbon nanotubes/clay hybrids. Bai T; Zhu B; Liu H; Wang Y; Song G; Liu C; Shen C Int J Biol Macromol; 2020 May; 151():628-634. PubMed ID: 32092421 [TBL] [Abstract][Full Text] [Related]
6. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Kumar M; Mohanty S; Nayak SK; Rahail Parvaiz M Bioresour Technol; 2010 Nov; 101(21):8406-15. PubMed ID: 20573502 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of biodegradable poly (lactic acid)/carbon nanotube nanocomposite foams: Significant improvement on rheological property and foamability. Li Y; Yin D; Liu W; Zhou H; Zhang Y; Wang X Int J Biol Macromol; 2020 Nov; 163():1175-1186. PubMed ID: 32679324 [TBL] [Abstract][Full Text] [Related]
8. Polycarbonate/Poly(vinylidene fluoride)-Blend-Based Nanocomposites-Effect of Adding Different Carbon Nanofillers/Organoclay. Chiu FC; Behera K; Cai HJ; Chang YH Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451164 [TBL] [Abstract][Full Text] [Related]
9. Polylactide-based bionanocomposites: a promising class of hybrid materials. Sinha Ray S Acc Chem Res; 2012 Oct; 45(10):1710-20. PubMed ID: 22953971 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and Characterization of PLA/PBAT Blends, Blend-Based Nanocomposites, and Their Supercritical Carbon Dioxide-Induced Foams. Behera K; Tsai CH; Liao XB; Chiu FC Polymers (Basel); 2024 Jul; 16(14):. PubMed ID: 39065288 [TBL] [Abstract][Full Text] [Related]
12. Strong synergistic toughening and compatibilization enhancement of carbon nanotubes and multi-functional epoxy compatibilizer in high toughened polylactic acid (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blends. Zhao X; Yu J; Wang X; Huang Z; Zhou W; Peng S Int J Biol Macromol; 2023 Oct; 250():126204. PubMed ID: 37573914 [TBL] [Abstract][Full Text] [Related]
13. Shear flow and carbon nanotubes synergistically induced nonisothermal crystallization of poly(lactic acid) and its application in injection molding. Tang H; Chen JB; Wang Y; Xu JZ; Hsiao BS; Zhong GJ; Li ZM Biomacromolecules; 2012 Nov; 13(11):3858-67. PubMed ID: 23072455 [TBL] [Abstract][Full Text] [Related]
14. Selective localization of multiwalled carbon nanotubes in poly(epsilon-caprolactone)/polylactide blend. Wu D; Zhang Y; Zhang M; Yu W Biomacromolecules; 2009 Feb; 10(2):417-24. PubMed ID: 19140730 [TBL] [Abstract][Full Text] [Related]
15. Role of Maleic Anhydride-Grafted Poly(lactic acid) in Improving Shape Memory Properties of Thermoresponsive Poly(ethylene glycol) and Poly(lactic acid) Blends. Nonkrathok W; Trongsatitkul T; Suppakarn N Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146067 [TBL] [Abstract][Full Text] [Related]
16. Effect of hydroxyl and carboxyl-functionalized carbon nanotubes on phase morphology, mechanical and dielectric properties of poly(lactide)/poly(butylene adipate-co-terephthalate) composites. Wang P; Gao S; Chen X; Yang L; Wu X; Feng S; Hu X; Liu J; Xu P; Ding Y Int J Biol Macromol; 2022 May; 206():661-669. PubMed ID: 35248605 [TBL] [Abstract][Full Text] [Related]
17. Toughness decrease of PLA-PHBHHx blend films upon surface-confined photopolymerization. Rasal RM; Hirt DE J Biomed Mater Res A; 2009 Mar; 88(4):1079-86. PubMed ID: 18428981 [TBL] [Abstract][Full Text] [Related]
18. Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites. Arjmandi R; Hassan A; Haafiz MK; Zakaria Z; Islam MS Int J Biol Macromol; 2016 Jan; 82():998-1010. PubMed ID: 26592699 [TBL] [Abstract][Full Text] [Related]
19. Biomedical nanocomposites of poly(lactic acid) and calcium phosphate hybridized with modified carbon nanotubes for hard tissue implants. Lee HH; Sang Shin U; Lee JH; Kim HW J Biomed Mater Res B Appl Biomater; 2011 Aug; 98(2):246-54. PubMed ID: 21591250 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Interfacial Adhesion by Reactive Carbon Nanotubes: New Route to High-Performance Immiscible Polymer Blend Nanocomposites with Simultaneously Enhanced Toughness, Tensile Strength, and Electrical Conductivity. Zhao X; Wang H; Fu Z; Li Y ACS Appl Mater Interfaces; 2018 Mar; 10(10):8411-8416. PubMed ID: 29488745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]