These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 39210046)
1. YY1-controlled regulatory connectivity and transcription are influenced by the cell cycle. Lam JC; Aboreden NG; Midla SC; Wang S; Huang A; Keller CA; Giardine B; Henderson KA; Hardison RC; Zhang H; Blobel GA Nat Genet; 2024 Sep; 56(9):1938-1952. PubMed ID: 39210046 [TBL] [Abstract][Full Text] [Related]
2. Prediction of cell-type-specific cohesin-mediated chromatin loops based on chromatin state. Liu L; Jia R; Hou R; Huang C Methods; 2024 Jun; 226():151-160. PubMed ID: 38670416 [TBL] [Abstract][Full Text] [Related]
3. Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression. Vos ESM; Valdes-Quezada C; Huang Y; Allahyar A; Verstegen MJAM; Felder AK; van der Vegt F; Uijttewaal ECH; Krijger PHL; de Laat W Mol Cell; 2021 Aug; 81(15):3082-3095.e6. PubMed ID: 34197738 [TBL] [Abstract][Full Text] [Related]
4. YY1 Is a Structural Regulator of Enhancer-Promoter Loops. Weintraub AS; Li CH; Zamudio AV; Sigova AA; Hannett NM; Day DS; Abraham BJ; Cohen MA; Nabet B; Buckley DL; Guo YE; Hnisz D; Jaenisch R; Bradner JE; Gray NS; Young RA Cell; 2017 Dec; 171(7):1573-1588.e28. PubMed ID: 29224777 [TBL] [Abstract][Full Text] [Related]
5. Permeable TAD boundaries and their impact on genome-associated functions. Chang LH; Noordermeer D Bioessays; 2024 Oct; 46(10):e2400137. PubMed ID: 39093600 [TBL] [Abstract][Full Text] [Related]
6. Yin Yang 1 regulates cohesin complex protein SMC3 in mouse hematopoietic stem cells. Lu Z; Wang Y; Assumpção ALFV; Liu P; Kopp A; Saka S; Mcilwain SJ; Viny AD; Brand M; Pan X Blood Adv; 2024 Jun; 8(12):3076-3091. PubMed ID: 38531064 [TBL] [Abstract][Full Text] [Related]
7. HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Luo H; Zhu G; Eshelman MA; Fung TK; Lai Q; Wang F; Zeisig BB; Lesperance J; Ma X; Chen S; Cesari N; Cogle C; Chen B; Xu B; Yang FC; So CWE; Qiu Y; Xu M; Huang S Mol Cell; 2022 Feb; 82(4):833-851.e11. PubMed ID: 35180428 [TBL] [Abstract][Full Text] [Related]
8. YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment. Beagan JA; Duong MT; Titus KR; Zhou L; Cao Z; Ma J; Lachanski CV; Gillis DR; Phillips-Cremins JE Genome Res; 2017 Jul; 27(7):1139-1152. PubMed ID: 28536180 [TBL] [Abstract][Full Text] [Related]
9. Chromatin insulator mechanisms ensure accurate gene expression by controlling overall 3D genome organization. Bhattacharya M; Lyda SF; Lei EP Curr Opin Genet Dev; 2024 Aug; 87():102208. PubMed ID: 38810546 [TBL] [Abstract][Full Text] [Related]
11. ZNF143 deletion alters enhancer/promoter looping and CTCF/cohesin geometry. Zhang M; Huang H; Li J; Wu Q Cell Rep; 2024 Jan; 43(1):113663. PubMed ID: 38206813 [TBL] [Abstract][Full Text] [Related]
12. Impact of 3D genome organization, guided by cohesin and CTCF looping, on sex-biased chromatin interactions and gene expression in mouse liver. Matthews BJ; Waxman DJ Epigenetics Chromatin; 2020 Jul; 13(1):30. PubMed ID: 32680543 [TBL] [Abstract][Full Text] [Related]
13. CTCF and transcription influence chromatin structure re-configuration after mitosis. Zhang H; Lam J; Zhang D; Lan Y; Vermunt MW; Keller CA; Giardine B; Hardison RC; Blobel GA Nat Commun; 2021 Aug; 12(1):5157. PubMed ID: 34453048 [TBL] [Abstract][Full Text] [Related]
14. Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes. Rinzema NJ; Sofiadis K; Tjalsma SJD; Verstegen MJAM; Oz Y; Valdes-Quezada C; Felder AK; Filipovska T; van der Elst S; de Andrade Dos Ramos Z; Han R; Krijger PHL; de Laat W Nat Struct Mol Biol; 2022 Jun; 29(6):563-574. PubMed ID: 35710842 [TBL] [Abstract][Full Text] [Related]
15. Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic Stem Cells. Cuadrado A; Giménez-Llorente D; Kojic A; Rodríguez-Corsino M; Cuartero Y; Martín-Serrano G; Gómez-López G; Marti-Renom MA; Losada A Cell Rep; 2019 Jun; 27(12):3500-3510.e4. PubMed ID: 31216471 [TBL] [Abstract][Full Text] [Related]
16. Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Hanssen LLP; Kassouf MT; Oudelaar AM; Biggs D; Preece C; Downes DJ; Gosden M; Sharpe JA; Sloane-Stanley JA; Hughes JR; Davies B; Higgs DR Nat Cell Biol; 2017 Aug; 19(8):952-961. PubMed ID: 28737770 [TBL] [Abstract][Full Text] [Related]
17. Cohesin is required for long-range enhancer action at the Shh locus. Kane L; Williamson I; Flyamer IM; Kumar Y; Hill RE; Lettice LA; Bickmore WA Nat Struct Mol Biol; 2022 Sep; 29(9):891-897. PubMed ID: 36097291 [TBL] [Abstract][Full Text] [Related]
18. Transcription-dependent cohesin repositioning rewires chromatin loops in cellular senescence. Olan I; Parry AJ; Schoenfelder S; Narita M; Ito Y; Chan ASL; Slater GSC; Bihary D; Bando M; Shirahige K; Kimura H; Samarajiwa SA; Fraser P; Narita M Nat Commun; 2020 Nov; 11(1):6049. PubMed ID: 33247104 [TBL] [Abstract][Full Text] [Related]
19. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci. Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ Front Immunol; 2018; 9():425. PubMed ID: 29593713 [TBL] [Abstract][Full Text] [Related]
20. Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF. Aljahani A; Hua P; Karpinska MA; Quililan K; Davies JOJ; Oudelaar AM Nat Commun; 2022 Apr; 13(1):2139. PubMed ID: 35440598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]