These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 39210161)
1. Development and validation of a prediction model for malignant sinonasal tumors based on MR radiomics and machine learning. Wang Y; Han Q; Wen B; Yang B; Zhang C; Song Y; Zhang L; Xian J Eur Radiol; 2024 Aug; ():. PubMed ID: 39210161 [TBL] [Abstract][Full Text] [Related]
2. Magnetic resonance imaging based on radiomics for differentiating T1-category nasopharyngeal carcinoma from nasopharyngeal lymphoid hyperplasia: a multicenter study. Cheng J; Su W; Wang Y; Zhan Y; Wang Y; Yan S; Yuan Y; Chen L; Wei Z; Zhang S; Gao X; Tang Z Jpn J Radiol; 2024 Jul; 42(7):709-719. PubMed ID: 38409300 [TBL] [Abstract][Full Text] [Related]
3. The application of radiomics machine learning models based on multimodal MRI with different sequence combinations in predicting cervical lymph node metastasis in oral tongue squamous cell carcinoma patients. Liu S; Zhang A; Xiong J; Su X; Zhou Y; Li Y; Zhang Z; Li Z; Liu F Head Neck; 2024 Mar; 46(3):513-527. PubMed ID: 38108536 [TBL] [Abstract][Full Text] [Related]
4. Radiomics Analysis of Multiparametric MRI for Prediction of Synchronous Lung Metastases in Osteosarcoma. Luo Z; Li J; Liao Y; Liu R; Shen X; Chen W Front Oncol; 2022; 12():802234. PubMed ID: 35273911 [TBL] [Abstract][Full Text] [Related]
5. Multiparametric MRI-Based Interpretable Radiomics Machine Learning Model Differentiates Medulloblastoma and Ependymoma in Children: A Two-Center Study. Yimit Y; Yasin P; Tuersun A; Wang J; Wang X; Huang C; Abudoubari S; Chen X; Ibrahim I; Nijiati P; Wang Y; Zou X; Nijiati M Acad Radiol; 2024 Aug; 31(8):3384-3396. PubMed ID: 38508934 [TBL] [Abstract][Full Text] [Related]
6. Development and external validation of a multiparametric MRI-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer: a retrospective multicenter study. Li Z; Zhang J; Zhong Q; Feng Z; Shi Y; Xu L; Zhang R; Yu F; Lv B; Yang T; Huang C; Cui F; Chen F Eur Radiol; 2023 Mar; 33(3):1835-1843. PubMed ID: 36282309 [TBL] [Abstract][Full Text] [Related]
7. Multiparametric MRI-based radiomics model for predicting human papillomavirus status in oropharyngeal squamous cell carcinoma: optimization using oversampling and machine learning techniques. Sim Y; Kim M; Kim J; Lee SK; Han K; Sohn B Eur Radiol; 2024 May; 34(5):3102-3112. PubMed ID: 37848774 [TBL] [Abstract][Full Text] [Related]
8. MRI radiomics-based machine learning model integrated with clinic-radiological features for preoperative differentiation of sinonasal inverted papilloma and malignant sinonasal tumors. Gu J; Yu Q; Li Q; Peng J; Lv F; Gong B; Zhang X Front Oncol; 2022; 12():1003639. PubMed ID: 36212455 [TBL] [Abstract][Full Text] [Related]
9. Radiomics analysis of T1WI and T2WI magnetic resonance images to differentiate between IgG4-related ophthalmic disease and orbital MALT lymphoma. Shao Y; Chen Y; Chen S; Wei R BMC Ophthalmol; 2023 Jun; 23(1):288. PubMed ID: 37353736 [TBL] [Abstract][Full Text] [Related]
10. An MRI-Based Radiomics Nomogram to Assess Recurrence Risk in Sinonasal Malignant Tumors. Wang T; Hao J; Gao A; Zhang P; Wang H; Nie P; Jiang Y; Bi S; Liu S; Hao D J Magn Reson Imaging; 2023 Aug; 58(2):520-531. PubMed ID: 36448476 [TBL] [Abstract][Full Text] [Related]
11. Identifying key factors for predicting O6-Methylguanine-DNA methyltransferase status in adult patients with diffuse glioma: a multimodal analysis of demographics, radiomics, and MRI by variable Vision Transformer. Usuzaki T; Takahashi K; Inamori R; Morishita Y; Shizukuishi T; Takagi H; Ishikuro M; Obara T; Takase K Neuroradiology; 2024 May; 66(5):761-773. PubMed ID: 38472373 [TBL] [Abstract][Full Text] [Related]
12. Pretreatment Multiparametric MRI-Based Radiomics Analysis for the Diagnosis of Breast Phyllodes Tumors. Ma X; Gong J; Hu F; Tang W; Gu Y; Peng W J Magn Reson Imaging; 2023 Feb; 57(2):633-645. PubMed ID: 35657093 [TBL] [Abstract][Full Text] [Related]
13. The Effect of Magnetic Resonance Imaging Based Radiomics Models in Discriminating stage I-II and III-IVa Nasopharyngeal Carcinoma. Li Q; Yu Q; Gong B; Ning Y; Chen X; Gu J; Lv F; Peng J; Luo T Diagnostics (Basel); 2023 Jan; 13(2):. PubMed ID: 36673110 [TBL] [Abstract][Full Text] [Related]
14. Radiomics for Discriminating Benign and Malignant Salivary Gland Tumors; Which Radiomic Feature Categories and MRI Sequences Should Be Used? Zhang R; Ai QYH; Wong LM; Green C; Qamar S; So TY; Vlantis AC; King AD Cancers (Basel); 2022 Nov; 14(23):. PubMed ID: 36497285 [TBL] [Abstract][Full Text] [Related]
15. Clinical Breast MRI-based Radiomics for Distinguishing Benign and Malignant Lesions: An Analysis of Sequences and Enhanced Phases. Wang G; Guo Q; Shi D; Zhai H; Luo W; Zhang H; Ren Z; Yan G; Ren K J Magn Reson Imaging; 2024 Sep; 60(3):1178-1189. PubMed ID: 38006286 [TBL] [Abstract][Full Text] [Related]
16. Radiomics analysis allows for precise prediction of silent corticotroph adenoma among non-functioning pituitary adenomas. Rui W; Qiao N; Wu Y; Zhang Y; Aili A; Zhang Z; Ye H; Wang Y; Zhao Y; Yao Z Eur Radiol; 2022 Mar; 32(3):1570-1578. PubMed ID: 34837512 [TBL] [Abstract][Full Text] [Related]
17. Radiomics Nomograms Based on Non-enhanced MRI and Clinical Risk Factors for the Differentiation of Chondrosarcoma from Enchondroma. Pan J; Zhang K; Le H; Jiang Y; Li W; Geng Y; Li S; Hong G J Magn Reson Imaging; 2021 Oct; 54(4):1314-1323. PubMed ID: 33949727 [TBL] [Abstract][Full Text] [Related]
18. Deep Learning With an Attention Mechanism for Differentiating the Origin of Brain Metastasis Using MR images. Jiao T; Li F; Cui Y; Wang X; Li B; Shi F; Xia Y; Zhou Q; Zeng Q J Magn Reson Imaging; 2023 Nov; 58(5):1624-1635. PubMed ID: 36965182 [TBL] [Abstract][Full Text] [Related]
19. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
20. Prediction of carcinogenic human papillomavirus types in cervical cancer from multiparametric magnetic resonance images with machine learning-based radiomics models. İnce O; Uysal E; Durak G; Önol S; Dönmez Yılmaz B; Ertürk ŞM; Önder H Diagn Interv Radiol; 2023 May; 29(3):460-468. PubMed ID: 36994859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]