These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 39211503)
1. Probing machine learning models based on high throughput experimentation data for the discovery of asymmetric hydrogenation catalysts. Kalikadien AV; Valsecchi C; van Putten R; Maes T; Muuronen M; Dyubankova N; Lefort L; Pidko EA Chem Sci; 2024 Aug; 15(34):13618-13630. PubMed ID: 39211503 [TBL] [Abstract][Full Text] [Related]
3. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties. Gallegos LC; Luchini G; St John PC; Kim S; Paton RS Acc Chem Res; 2021 Feb; 54(4):827-836. PubMed ID: 33534534 [TBL] [Abstract][Full Text] [Related]
5. Molecular Machine Learning for Chemical Catalysis: Prospects and Challenges. Singh S; Sunoj RB Acc Chem Res; 2023 Feb; 56(3):402-412. PubMed ID: 36715248 [TBL] [Abstract][Full Text] [Related]
6. Data-Driven Insights into the Transition-Metal-Catalyzed Asymmetric Hydrogenation of Olefins. Singh S; Hernández-Lobato JM J Org Chem; 2024 Sep; 89(17):12467-12478. PubMed ID: 39149801 [TBL] [Abstract][Full Text] [Related]
7. Probing the mechanisms of enantioselective hydrogenation of simple olefins with chiral rhodium catalysts in the presence of anions. Buriak JM; Klein JC; Herrington DG; Osborn JA Chemistry; 2000 Jan; 6(1):139-50. PubMed ID: 10747398 [TBL] [Abstract][Full Text] [Related]
8. Towards Data-Driven Design of Asymmetric Hydrogenation of Olefins: Database and Hierarchical Learning. Xu LC; Zhang SQ; Li X; Tang MJ; Xie PP; Hong X Angew Chem Int Ed Engl; 2021 Oct; 60(42):22804-22811. PubMed ID: 34370892 [TBL] [Abstract][Full Text] [Related]
18. Machine Learning Design of Single-Atom Catalysts for Nitrogen Fixation. Wang S; Qian C; Zhou S ACS Appl Mater Interfaces; 2023 Aug; 15(34):40656-40664. PubMed ID: 37587686 [TBL] [Abstract][Full Text] [Related]
19. Systematic Data-Driven Modeling of Bimetallic Catalyst Performance for the Hydrogenation of 5-Ethoxymethylfurfural with Variable Selection and Regularization. Uusitalo P; Sorsa A; Russo Abegão F; Ohenoja M; Ruusunen M Ind Eng Chem Res; 2022 Apr; 61(14):4752-4762. PubMed ID: 35450012 [TBL] [Abstract][Full Text] [Related]
20. Controlling the Enantioselectivity in an Adaptable Ligand by Biomimetic Intramolecular Interlocking. Menke JM; Trapp O J Org Chem; 2022 Aug; 87(16):11165-11171. PubMed ID: 35939525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]