These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 39211503)

  • 1. Probing machine learning models based on high throughput experimentation data for the discovery of asymmetric hydrogenation catalysts.
    Kalikadien AV; Valsecchi C; van Putten R; Maes T; Muuronen M; Dyubankova N; Lefort L; Pidko EA
    Chem Sci; 2024 Aug; 15(34):13618-13630. PubMed ID: 39211503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iridium-Catalyzed Asymmetric Hydrogenation of Unsaturated Carboxylic Acids.
    Zhu SF; Zhou QL
    Acc Chem Res; 2017 Apr; 50(4):988-1001. PubMed ID: 28374998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties.
    Gallegos LC; Luchini G; St John PC; Kim S; Paton RS
    Acc Chem Res; 2021 Feb; 54(4):827-836. PubMed ID: 33534534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Efficient Asymmetric Hydrogenation Catalyzed by Iridium Complexes with Tridentate Chiral Spiro Aminophosphine Ligands.
    Yang F; Xie JH; Zhou QL
    Acc Chem Res; 2023 Feb; 56(3):332-349. PubMed ID: 36689780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Machine Learning for Chemical Catalysis: Prospects and Challenges.
    Singh S; Sunoj RB
    Acc Chem Res; 2023 Feb; 56(3):402-412. PubMed ID: 36715248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-Driven Insights into the Transition-Metal-Catalyzed Asymmetric Hydrogenation of Olefins.
    Singh S; Hernández-Lobato JM
    J Org Chem; 2024 Sep; 89(17):12467-12478. PubMed ID: 39149801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the mechanisms of enantioselective hydrogenation of simple olefins with chiral rhodium catalysts in the presence of anions.
    Buriak JM; Klein JC; Herrington DG; Osborn JA
    Chemistry; 2000 Jan; 6(1):139-50. PubMed ID: 10747398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards Data-Driven Design of Asymmetric Hydrogenation of Olefins: Database and Hierarchical Learning.
    Xu LC; Zhang SQ; Li X; Tang MJ; Xie PP; Hong X
    Angew Chem Int Ed Engl; 2021 Oct; 60(42):22804-22811. PubMed ID: 34370892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral Rhodium Nanoparticle-Catalyzed Asymmetric Arylation Reactions.
    Yasukawa T; Miyamura H; Kobayashi S
    Acc Chem Res; 2020 Dec; 53(12):2950-2963. PubMed ID: 33259184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones.
    Li YY; Yu SL; Shen WY; Gao JX
    Acc Chem Res; 2015 Sep; 48(9):2587-98. PubMed ID: 26301426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified machine-learning protocol for asymmetric catalysis as a proof of concept demonstration using asymmetric hydrogenation.
    Singh S; Pareek M; Changotra A; Banerjee S; Bhaskararao B; Balamurugan P; Sunoj RB
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1339-1345. PubMed ID: 31915295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Quantum Mechanical Predictions of Enantioselectivity in a Rhodium-Catalyzed Asymmetric Hydrogenation.
    Guan Y; Wheeler SE
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9101-9105. PubMed ID: 28586140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Synthetic Methodologies via Catalytic Enantioselective Synthesis of 3,3-Disubstituted Oxindoles.
    Cao ZY; Zhou F; Zhou J
    Acc Chem Res; 2018 Jun; 51(6):1443-1454. PubMed ID: 29808678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric hydrogenation in the core of dendrimers.
    He YM; Feng Y; Fan QH
    Acc Chem Res; 2014 Oct; 47(10):2894-906. PubMed ID: 25247446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning studies on asymmetric relay Heck reaction-Potential avenues for reaction development.
    Das M; Sharma P; Sunoj RB
    J Chem Phys; 2022 Mar; 156(11):114303. PubMed ID: 35317601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning.
    Zahrt AF; Henle JJ; Rose BT; Wang Y; Darrow WT; Denmark SE
    Science; 2019 Jan; 363(6424):. PubMed ID: 30655414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (NHC)Ni(II)-Directed Insertions and Higher Substituted Olefin Synthesis from Simple Olefins.
    Zhang Z; Chen Y; Gu X; Ho CY
    Acc Chem Res; 2023 May; 56(9):1070-1086. PubMed ID: 37036948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Design of Single-Atom Catalysts for Nitrogen Fixation.
    Wang S; Qian C; Zhou S
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40656-40664. PubMed ID: 37587686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic Data-Driven Modeling of Bimetallic Catalyst Performance for the Hydrogenation of 5-Ethoxymethylfurfural with Variable Selection and Regularization.
    Uusitalo P; Sorsa A; Russo Abegão F; Ohenoja M; Ruusunen M
    Ind Eng Chem Res; 2022 Apr; 61(14):4752-4762. PubMed ID: 35450012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the Enantioselectivity in an Adaptable Ligand by Biomimetic Intramolecular Interlocking.
    Menke JM; Trapp O
    J Org Chem; 2022 Aug; 87(16):11165-11171. PubMed ID: 35939525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.